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1.0 OBJECTIVE: Objective of this chapter is to gain some knowledge about 

algebraic structure with one binary operation. 

 

1.1 INTRODUCTION: Let us consider the equation x +3 =1; we see that the 

natural number can not be a solution of it, while an integer is a solution of it. 

Similarly rotation of an equilateral triangle about their axes of symmetry 

results into a figure in which the position of the points changes while there is 

no change in shape of figure. Therefore, keeping the properties of integers and 

rotation of some figures like a line segment or equilateral triangle about their 
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axes of symmetry, in mind, we come to know about groups, permutations 

groups.  In this chapter, we define groups, permutation groups, subgroups and 

cosets with suitable examples. 

 

1.2       SOME DEFINITIONS 

1.2.1 Definition: For a non-empty set A, A�A is called the Cartesian product of A 

with itself.  Therefore, A�A= � (a, b) � a,b∈A�. 

 

1.2.2 Definition: ∗: A�A �A, ∗ is a function from set A�A to A is called binary 

operation on A. 

 Example (1) If we add two natural numbers then resultant is again a natural 

number. Hence addition is a binary operation on set of natural numbers. 

 (2) Multiplication is binary operation on set of integer while division is not a 

binary operation on set of integers. 

1.2.3 Notation: �G, ∗ � is a collection of set G with ∗ as binary operation on it. 

 

1.3 GROUP 

1.3.1 Definition: For �G, ∗�, G is called a group if it satisfies the followings 

axioms. 

(1) ∗ is associative on G, i.e. a∗(b∗c) = (a∗b) ∗ C " a, b, c�G 

(2) Identity exits in G i.e., there exist an element e � G such that 

  a∗e = e∗a = a ," a � G, (Here e is called identity element)  

(3) Inverse of every element of G exits in G i.e. for a � G there exist b � G 

such that  

 a∗b = b∗a =e. We call b as inverse of a.  

 Beside it if a∗b = b∗a " a, b �G, then G is called commutative group. 
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1.3.2 Note: In order to show that a non empty set G is a group, we have to find an 

operation which is binary on G.  In other words we can say that G is closed 

under that operation and satisfies all the three axioms defined above. 

Example:  I (set of integers) is a group under + i.e. (I, +) is a group 

Solution: We know that sum of two integers is again an integer; therefore, 

addition is a binary operation on I. 

(1) Ordinary addition is associative since a + (b + c) = (a + b) + c " a, b, c�G 

(2) Zero is an integer such that 0+ a = a + 0 = a " a � I; identity exist in I. 

(3) For every a�I, we have – a � I such that a+(-a) = (-a)+a = 0 i.e. inverse of 

every element exist in I. 

As all the axioms of a group are satisfied by elements of I under addition, 

therefore, it is a group. Further a+b = b+a " a, b�I.  Hence I is commutative 

group under addition. 

 

1.3.3 Note:  Under ordinary addition zero is always identity element and it is called 

as additive identity while 1 is always multiplicative identity under ordinary 

multiplication. 

Example: Q-{0}, the set of all non-zero rational numbers forms a group under 

multiplication. 

Solution: Since multiplication of two rational numbers is always a rational 

number, therefore, multiplication is binary operation on set Q-{0} 

(1) Ordinary multiplication is associative because 

   a(bc) = (ab) c ∀ a,b,c∈ Q-{0}. 

(2) 1 ∈ Q- {0}, such that 1.a = a.1 = a∀ a∈ Q-{0}.  Here 1 acts as identity 

element. 
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(3) For a∈Q-{0}, we have 
a
1

∈ Q-{0} such that a
a
1 =

a
1 a=1, therefore, inverse 

of every element exist in Q-{0}. Hence Q-{0} becomes a group under 

multiplication. 

 

Example: Show that set G of all numbers of the form 2ba + , a, b ∈I forms 

a group under the operation ( 2ba + ) + ( 2dc + ) = 2)()( dbca +++ . 

Solution: Since )( ca +  and )( db +  are two integers, therefore, 

 ( 2ba + ) + ( 2dc + )= 2)()( dbca +++ ∈ G . Hence above operation is  

binary operation on G. 

(1) Since  ( 2ba + ) + (( 2dc + ) + ( 2fe + )) 

 =( 2ba + )+( 2)()( fdec +++  ) 

 = 2)()( fdbeca +++++       (1) 

Also (( 2ba + ) + ( 2dc + )) + ( 2fe + ) 

 =( 2)()( dbca +++ )+  ( 2fe + ) 

 = 2)()( fdbeca +++++      (2)   

By (1) and (2), we get that associative law holds in G. 

(2)    ( 2ba + ) + ( 200 + ) = 2)0()0( +++ ba =( 2ba + ) i.e. identity 

exists in G and 200 + = 0  is identity element. 

(3) For ( 2ba + ) in G we have ( 2ba −− ) exist in G such that  

( 2ba + )+ ( 2ba −− ) = ( 2ba −− )+ )2( ba +  =0, showing that inverse 

of every element exist in G. 

Since ( 2ba + ) + ( 2dc + ) = 2)()( dbca +++  = 2)()( bdac +++  
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= ( 2dc + )+( 2ba + ) , therefore, it is commutative group under above 

binary operation. 

 

1.3.4 Theorem: Prove that in a matrix group under matrix multiplication, either all 

the matrices are singular or non-singular. (Singular matrix is a matrix with 

zero determinant value and non-singular matrix have non-zero determinant 

value) 

Proof: Let M be the matrix group under matrix multiplication as binary 

operation and E be the identity under multiplication then  

 AE =EA =A ∀ A∈M   (1) 

If E is singular matrix then the equation (1) is not satisfied by any non- 

singular matrix A of M. The reason is that if A is non-singular and E is 

singular then AE is singular and so it cannot be equal to a nonsingular matrix. 

Therefore if E is singular then every matrix A∈M must be singular. 

Now suppose E is non singular matrix .Let A∈M and is singular then there 

exists no matrix B for which AB=E (since AB will be singular while E is non 

singular. Thus A does not posses inverse. This contradicts the hypothesis that 

M is a group. Therefore, if E is non-singular then every matrix in M must be 

non-singular. 

Note: By above theorem we see that inverse of a singular matrix also exist. 

The reason is that if identity element is a singular matrix then we can obtain 

the inverse of a singular matrix. The following example explains the result.   

Example: Show that the set of all matrices of the form ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

 where x is non 

zero real number is a group under matrix multiplication. 



MCA-205 6 
 

Solution: let M = { ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

/ x is a non-zero real number} clearly determinant 

value of this matrix ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

 is zero so it is a singular matrix. 

Closure property holds in M because product of two singular matrices is again 

a singular matrix. 

(1) Since matrix multiplication is always associative, associative law holds. 

(2) Existence of identity: Let E = ⎥
⎦

⎤
⎢
⎣

⎡
ee
ee

 be the identity element, then 

AE=EA=A ∀ A∈M , therefore, ⎥
⎦

⎤
⎢
⎣

⎡
ee
ee

⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

= ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

 

 

 ⇒ ⎥
⎦

⎤
⎢
⎣

⎡
exex
exex

22
22

 = ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

 

 ⇒ 2ex =x  

⇒  e =
2
1 , since x is not zero. Thus E =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2
1

2
1

2
1

2
1

. 

 

(3) Existence of inverse: Let A = ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

 be an arbitrary element of M. 

suppose that B = ⎥
⎦

⎤
⎢
⎣

⎡
yy
yy

 is its inverse.  

So AB = E ⇒ ⎥
⎦

⎤
⎢
⎣

⎡
xx
xx

⎥
⎦

⎤
⎢
⎣

⎡
yy
yy  =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2
1

2
1

2
1

2
1
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 ⇒ 
⎥
⎦

⎤
⎢
⎣

⎡
xyxy
xyxy

22
22  =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2
1

2
1

2
1

2
1

 ⇒ 2xy =
2
1  ⇒ y =

x4
1  

Therefore B =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

xx

xx

4
1

4
1

4
1

4
1

 is inverse of A in M. 

Example: Show that the set of all real (2×2) matrix ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

, ad-bc ≠0  is a 

group under matrix multiplication as binary operation. 

Solution: Let G be the set of all  real (2×2) matrix ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

, ad-bc ≠0. For  G 

to be group it should satisfies the following properties. 

(1) Closure property:  Let ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

 and ⎥
⎦

⎤
⎢
⎣

⎡

22

22
dc
ba

 are arbitrary element of 

G, therefore, 0)( 1111 ≠− cbda  and 0)( 2222 ≠− cbda . 

  Now ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

⎥
⎦

⎤
⎢
⎣

⎡

22

22
dc
ba

= ⎥
⎦

⎤
⎢
⎣

⎡
++
++

21212121

21212121
ddbccdac
dbbacbaa

. As 

))(())(( 2121212121212121 dbbacdacddbccbaa ++−++  

= )( 2222 cbda − )( 1111 cbda − 0≠ . Hence ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

⎥
⎦

⎤
⎢
⎣

⎡

22

22
dc
ba

∈G. 

(2) Associative property: Let A= ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

, B= ⎥
⎦

⎤
⎢
⎣

⎡

22

22
dc
ba

 and  C= ⎥
⎦

⎤
⎢
⎣

⎡

33

33
dc
ba

, 

then A(BC) 

= ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

22

22
dc
ba

⎟⎟
⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡

33

33
dc
ba

= ⎥
⎦

⎤
⎢
⎣

⎡

11

11
dc
ba

⎥
⎦

⎤
⎢
⎣

⎡
++
++

32323232

32323232
ddbccdac
dbbacbaa

 



MCA-205 8 
 

= ⎥
⎦

⎤
⎢
⎣

⎡
++++++
++++++

)()()()(
)()()()(

32321323213232132321

32321323213232132321
ddbcddbbaccdacdcbaac
ddbcbdbbaacdacbcbaaa

 

= ⎥
⎦

⎤
⎢
⎣

⎡
++++++
++++++

321321321321321321321321

321321321321321321321321
dddbcddbcbaccddacdcbcaac
ddbbcbdbabaacdbacbcbaaaa

 

Similarly (AB)C 

= ⎥
⎦

⎤
⎢
⎣

⎡
++++++
++++++

321321321321321321321321

321321321321321321321321
dddbcddbcbaccddacdcbcaac
ddbbcbdbabaacdbacbcbaaaa

 

=A(BC). 

(3) Identity element: As ⎥
⎦

⎤
⎢
⎣

⎡
10
01

∈G such that  

 ⎥
⎦

⎤
⎢
⎣

⎡
10
01

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

= ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

⎥
⎦

⎤
⎢
⎣

⎡
10
01

=
 

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

   ∀ ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

∈G. 

(4) Existence of inverse: For ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

∈G, we have 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−

bcad
a

bcad
c

bcad
b

bcad
d

∈G such that   

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−

bcad
a

bcad
c

bcad
b

bcad
d

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−

bcad
a

bcad
c

bcad
b

bcad
d

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

= ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 

i.e. inverse of every element exist in G . Hence G is a group.
  

Example: Taking a group {e, x, y, z} of order four, construct two different 

tables using two binary operation under which this set becomes group. We 

define two tables as 

 



MCA-205 9 
 

   e x y z 

e e x y z 

x x e z y 

 y y z e x 

 z z y x e 

                    where x2  = y2 =z2 = e , xy =z ,           

      (Table 1) 

 e x y z 

e e x y z 

x x y z e 

y y z e x 

z z e x y 

 where x4 = e , x is generator of this group.  

   (Table 2) 

1.3.5  Definition: Addition mod m of two integers a and b is written as a+m b and is 

the least non-negative integer less then m when sum of a and b is divided by 

m. 

 Similarly we define a× mb is least non-negative integer less then m 

when product of a, b is divided by m. This operation is called multiplication 

mod m. 

For example  5+57 = 2, 5+37 = 0 

 and    5× 37=2,     5× 27=1,  5× 117=2. 

 

Example: Set of integers G = {0,1,2… m -1} forms group under addition mod 

m. 

Solution: - As we know by definition of division that when an integer is 

divided by m, its remainder is always less than m, therefore, it is an element of 
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the set G.  It is clear by definition of addition mod m that it is binary operation 

on G. 

(i) Associative property holds in G since  

 a+m(b+mc)  

= a+m (least non negative remainder when b+c is divided by m) 

= Least non-negative remainder when a+(b+c) is divided by m. 

= least non negative remainder when (a+b)+c is divided by m.(ordinary 

addition is associative ) 

= (Least non negative remainder when a+b is divided by m) +mc 

= (a+mb)+mc  therefore, addition mod  is associative. 

(ii) Existence of identity: 0∈G acts as identity elements since 0+ma=a+m0=a 

"a�G 

(iii) Existence of inverse: For " a�G, we find m-a such that 

 a+m(m-a)=(m-a)+ma=0. Therefore inverse of a is m-a. Since 0 ≤ a ≤ m, 

therefore m-a ≤ m and hence inverse of a is in G.   

Hence G is a group. 

 

Example: Show that G ={a / a ∈ I+ (set of positive integers), (a , m) =1 and  a 

< m}i.e set of all positive integers which are less then m( ≥ 2) and are co-

prime to m ,  forms a group under multiplication mod m . 

Note: (a, m) is notation for greatest common divisor of a and m. 

Solution: Since by definition of multiplication mod m, ba m×  always less 

then m , further a , b ∈ G, therefore, (a, m)=1 and (b, m)=1 and hence 

1),( =× mba m  and hence Gba m ∈×  i.e. multiplication mod m is a binary 

operation on G. 
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(1) Multiplication is associative as )( cba mm ×× = ma × (least non-negative 

remainder when bc is divided by m. 

= Least non negative remainder when a(bc) is divided by m 

Since ordinary multiplication is associative on set of integers , therefore above 

expression is  

= Least non negative remainder when (ab) c is divided by m  

= (Least non negative remainder when ab is divided by m) cm×  

= ))( cba mm ××  

  (2) 1 acts as identity element since bm×1 = 1mb × = b for all b in G. 

(3) Let a be an arbitrary element of G. Since (a, m) =1, we can find two integer 

c and d in G such that ac +md =1(this is due to Euler’s theorem). Then ac 

+md-1 is congruent to ac –1 mod m i.e. ac = 1 mod m ⇒ ca m× =1 . Hence 

inverse of every element exists in G. Also ba m×  is least non-negative 

remainder when ab is divided by m = least non-negative remainder when ba is 

divided by m = ab m× . Therefore G is a commutative group. 

 

1.3.6 Note: - We see that number of elements in a group G, where G is group under 

addition mod m, is exactly m.  But when we take G as a group under 

multiplication mod m, then number of elements in G is equal to ?(m),? is 

Euler’s function and is calculated as if m= n
nppp ααα .........21

21  then φ(m)= 

φ( n
nppp ααα .........21

21 )= φ( 1
1
αp )φ( 2

2
αp )…φ( n

npα ) 

 Where φ( i
ipα )= )1(1 −−

ii pp iα , pi are distinct prime numbers. 

1.3.7 Definition: Let G be a group under * as binary operation, then an element g∈ 

G is called generator of G if every element of G is equal to gt for some 
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positive integer t. Here gt = g*g*g*…*g exactly t times. Such groups are 

called cyclic group. 

 Example: Set of integers {0,1,2,…,m-1} is a cyclic  group under addition 

 modulo m and 1 is the generator of this group  

  

1.4 PERMUTATION GROUP 

 

1.4.1 Definition: A one-one mapping of G onto itself is called a permutation on G.  

Generally we take G a finite set. For example if we take G ={1,2}, then 

number of permutations two exactly two. Let these are  σ1 and σ2 where  

 σ1 is defined as ; σ1 (1)=1, σ1(2)=2  and  

 σ2 is defined as;σ2 (1)=2, σ2(2)=1. 

Infect if G is a set having n elements then it has n! permutations defined on it. 

 

1.4.2 Definition:  If f: X→Y and g: Y→Z are two functions, then their product or 

composition function is defined as fg which is a function from X to Z and for 

x∈X, (x)f g = ((x)f)g. If G has n elements say a1,a2,…,an then permutation f is 

represented as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

132

321

...

...
aaaaaa
aaaaaa

nki

nki  gives us that f(a1)=a2 , f(a2)=a3, f(ai)=ak, 

f(ak)=an, f(an)=a1 and f(at)=at for rest of t different from 1,2,3,i,k,n. 

 

1.4.3 Note: By a permutation on n symbols means that how many ways we can 

arrange n different things linearly. If we take G ={a1,a2,a3} then number of 

different arrangement are as follow. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

321

321

aaa
aaa

= I, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

231

321

aaa
aaa

= )( 32 aa , 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

312

321

aaa
aaa

= (a1a2), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

123

321

aaa
aaa

= (a1a3), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

132

321

aaa
aaa

=  (a1a2a3),              

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

213

321

aaa
aaa

=  (a1a3a2). These are 3! Permutations i.e. 6 permutations. More 

over if we write f as (a1,a2,a3,ai,ak,an) then image of a1 under f is a2 , image of 

a2 under f is a3 , a3 is ai , ai is ak , ak is an  and image of an is a1. 

 

1.4.4 DEFINITION: A permutation is called cyclic permutation if image of first 

element is second, image of second is third and so on and image of last 

element is first element. Number of elements in the cycle is called length of  

cycle .  

For example (123) is a cycle of length three. 

 

1.4.5 Remark (1) A cyclic permutation remains same if we give a cyclic shift to it 

elements there fore (123)=(231)=(312) but (123) ≠  (132). 

(2) Every permutation on n symbols can be written as product of its cyclic 

permutation. 

(3) A cycle of length two is called transposition. 

(4) A permutation is called even permutation if it product of even number of 

transpositions other wise it is called odd permutation. 

(5) Product of even permutations is again an even permutation. 

(6) Product of two odd permutations is again an even permutation. 

(7) Product of an odd permutation with an even permutation is an odd 

permutation. 

(8) A cycle of odd length is always an even permutation while that off even 

length is an odd permutation. 
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1.4.6 Note: If we have two permutations say (123) and (132) then their product is 

defined as (123) (132)= I. Infect first permutation takes 1 to 2 while second 

take 2 to 1, therefore their composition takes 1 to 1. Similarly 2 goes to 2 and 

3 goes to 3. i.e. resultant permutation is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
321
321

 =I. 

1.4.7 Theorem: Prove that every permutation on n symbols can be written as 

product of its cyclic permutations. 

         Proof: Let a1,a2,…,an are n symbols on which a permutation is taken .Now 

choose first element say a1 take its image say a2 ,then find image of a2 

continue this process till we approaches to a1 which is possible because a1 is 

also image of some element say ai .In this way we obtain a cycle (a1,a2,…,ai). 

Now take at which is element of given permutation that does not belongs to 

the cycle taken above. Repeat the same process for at. Continuing in this way 

we get different cycles whose product is given permutation. Hence theorem is 

proved.  

 

Example in support of given theorem: Take a permutation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
958764123
987654312

 i.e. a permutation on nine symbols. It 

can also be written as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5876123
8765312

 since we can leave those 

elements, which are left unchanged. Now we start with 1. Image of 1 is 2, 

image of 2 is 3 and that of 3 is one so we have a cycle (1  2  3) . As 5 is not in 

cycle (1  2  3) so we start with 5. Clearly image of 5 is 6, image of 6 is 7, 



MCA-205 15 
 

Image of 7 is 8 and that of 8 is 5,we get another cycle (5  6  7  8). There fore 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
958764123
987654312

=(1  2  3)  (5  6  7  8). 

 

1.4.8 Theorem: Prove that every cycle of Sn can be written as product of 

transpositions. 

Proof: Let (a1 a2 a3 …at) be a cycle of length t .Now consider the permutation 

(a1 a2)( a1 a3)…( a1 at) .we see that under this permutation a1  goes to a2 by first 

transposition ,  a2 remains unchanged by rest of transposition of this 

permutation. So under this permutation a1 goes to a2. Now a2 goes to a1 by first 

transposition, a1 goes to a3 by second transposition and a3 remains unchanged 

by rest transposition of this permutation .So a2 goes to  a3 .Continuing in this 

way we get that product of all transposition of this permutation is (a1 a2 a3 

…at) which is a cycle of length t .Hence (a1 a2 a3 …at) = (a1 a2)( a1 a3)…( a1 at) 

. 

Example in support of this theorem: Take (1  2  3   4) i.e. a cycle of length 

four, then we can write (1  2  3  4) =(1  2)(1  3)(1  4).  

 

1.4.9 Corollarary : Prove that every permutation on n symbols can be written as 

product of transpositions. 

Proof: Let f be a permutation on n symbols. We can write f as product of it 

cyclic permutations (theorem 1.4.7). But we know that every cycle can be 

written as product of transposition (theorem 1.4.8). So every permutation can 

be written as product of transposition. 

Example in support of theorem 1.4.9 Take a permutation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
958764123
987654312

 we can write it as a product of different 



MCA-205 16 
 

cycles as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
958764123
987654312 =(1  2  3) (5  6  7  8). Now we can 

write (1  2  3) = (1  2)(1  3) and   (5  6  7  8).=  (5  6) (5  7) (5   8). So  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
958764123
987654312

= (1  2)(1  3)(5  6) (5  7) (5   8) .  

 

1.4.10 Note (1) A permutation is called identity permutation if image of every 

element is same under it i.e. I(ai)=ai for all i.  

 

1.4.11 Theorem: Prove that Sn i.e. set of all permutations on n symbols becomes a 

group under composition of mapping as operation.     

   

Proof: As we know that composition of mapping which are one –one and onto 

is again one –one and onto, therefore composition of mapping or permutation 

is a binary operation on Sn  

(i)  Composition of permutation is associative also as (ai)((fg)h)= 

((ai)(fg))h)= ((aif)g)h=(ai)f)(gh)= (ai)(f(gh)i.e.  (fg)h= f(gh) 

(ii)  Since identity permutation acts as identity element, identity exists in Sn 

We also know that if a mapping is one –one and onto then its inverse mapping 

f-1 exists and is defined as f-1(ai)=aj iff f(aj)=ai.since every permutation is one-

one and onto ,there fore inverse of every element of Sn is in Sn .Hence Sn is a 

group .It is called group of permutations. 

 

1.4.12 Theorem: Prove that set of all even permutations is a group and this group is 

called alternating group of degree n. its order is n!/2  (it is generally denoted 

by An ). 
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Proof: Since by remark 1.4.5 (5), we get that product of two even 

permutations is an even permutation, therefore product of permutation is a 

binary operation on An . 

(1) This product is associative since An ⊂ Sn and elements of Sn satisfies 

associative law 

(2) As I is an even permutation so I ∈An acts as identity element. 

(3) Let f ∈An be an even permutation and g be its inverse permutation then   fg 

=I. Since product is even permutation, so by remark 1.4.5 (7) g cannot be odd 

.So g is even, therefore is an element of An. Hence proof is over. 

 

Example in support of this theorem: Take S3 ={I, (1 2), (1 3), (2 3), (1 2 3), 

(1 3 2)} then using remark 1.4.5 (8) we get that A3 ={I, (1 2 3), (1 3 2)} is a 

group as identity exists in A3, inverse of (1 2 3) is (1 3 2). 

 

1.5 SOME RESULTS ON GROUP. 

 

1.5.1  Theorem: If G is a group, then it has unique identity. 

Proof: Let if possible e and f be two identity elements of G, 

then  e.f = e  (taking f as identity element )   (1) 

and  e.f  = f  (taking e as identity element )   (2)    

From (1) and (2) we get e = f  i.e. identity is unique. 

 

1.5.2 Theorem: In a group inverse of each element is unique. 

Proof: Let a∈G has two inverse b and c say, then by definition of inverse  

          a.b=b.a=e     (1)  

          a.c=c.a=e     (2) 

Since b.(a.c)=(b.a).c  (by associative law)   (3) 
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Also   b.(a.c)=b.e=b     (4) 

and    (b.a).c=e.c=c     (5) 

By (3),(4),(5) we get  b=c. 

i.e. Inverse of an element is unique in G. 

 

1.5.3 Theorem: For a group G, prove that for every a in G, 11)( −−a =a when operation 

is multiplicative and -(-a) =a when operation is additive. 

Proof: Let a-1 be inverse of a and 11)( −−a  be inverse of a-1 then by definition of 

inverse  a-1 . a =  a . a-1 =e   (1)  

and   a-1 . 11)( −−a  = 11)( −−a . a-1 =e  (2)  

Now using  (1),  (2) and theorem 1.5.2 we get 11)( −−a =a.  

Similarly we can show second result. 

 

1.5.4 Theorem: Prove that for all a and b in a group G we have (ab)-1 = b-1a-1 and 

under addition it can be written as –(a+b) =(-b) + (-a). 

Proof: Let (ab)-1 be inverse of ab, then by definition of inverse  

 (ab). (ab)-1 = (ab)-1.(ab) = e   (1) 

and   (ab). b-1a-1 = a(bb-1)a-1 = a.e.a-1 =e   (2) 

 b-1a-1 (ab)= b-1(a-1 a).b  = b-1e.b = e  (3) 

By (2) and (3), b-1a-1 is inverse of ab. Now using (1), (2), (3) and theorem 

1.5.2   we get (ab)-1 = b-1a-1.  

Similarly we can show second result. 

 

1.6 SUBGROUP  

 

1.6.1 Definition: Let H be a subset of a group G.  If H also becomes a group under 

the same binary operation as in G, then H  is called as a subgroup of G. 
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Example: Take 2I, the set of even integers, then it is a group under ordinary 

addition. Since 2I ⊂ I , the set of integers which is also a group under ordinary 

addition, therefore, 2I is a subgroup of I.  

 

Example: Take G={1,a,a2,a3,a4,a5}such that a6=1 , then G becomes a group 

multiplication. Now take H={1,a3}; a6=1. Clearly H is also a group under 

multiplication and is a subgroup of G. 

1.6.2 Theorem: A subset H of a group G will be a subgroup of G if and only if      a-

1b∈H  ∀ a, b∈H (Equivalently, for a subset H of G, HH-1 = H if and only if H 

is a subgroup of G). 

Proof: Let H be a subgroup of group G, therefore, for a, b ∈H,  a-1∈H and by 

closure property a-1b∈H. Conversely let us suppose that H is a subset of G 

such that a-1b∈H ∀ a, b∈H. Since H is subset of G, therefore, elements of H 

satisfies associative property.  

  Also for a∈H, a, a ∈H which gives us that a-1a=e∈H i.e. 

identity exist in G. 

   Again a, e∈H ⇒ a-1e= a-1∈H ∀ a∈H i.e inverse of every 

element exist in G. 

  Finally a∈H ⇒ a-1∈H, therefore, (a-1)-1.b = ab∈H ∀ a,b∈H i.e. 

closure property is satisfied by the element of H. 

Since H satisfies all the axioms of a group, it becomes a subgroup of G. 

 

1.6.3 Theorem: Let G is a finite group, then a subset H of G will be a subgroup of 

G if and only if it is closed under binary operation defined on G i.e. ab∈H ∀ a, 

b∈H (Equivalently, for a finite group G, a subset H of G will be a subgroup of 

G if and only if HH = H). 
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Proof: Let H be a subgroup, then for a,b ∈H, ab∈H (by definition of 

group).Conversely, let us suppose that ab∈H ∀ a,b∈H, we assert that H is a 

subgroup of G. 

  Since H is a subset of G, elements of H satisfy associative law.   

  For a∈H, by assumption, aa=a2∈H. Similarly ak∈H. But H is 

finite being a subset of finite set, therefore, there exist positive integers s and t 

such that  

  as=at ⇒  as-t=e∈H , showing that identity exist in H.  

Also we can write as-t= as-t-1a=e ⇒ as-t-1 is inverse of a  exist in H. Similarly we 

can show that inverse of every element of H exist in H. Hence H is a subgroup 

of G. 

Example: Let G be the group of all real (2×2) matrix ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

 , ad-bc ≠0  

with matrix multiplication as binary operation. Show that the set H 

={ ⎥
⎦

⎤
⎢
⎣

⎡
d
ba

0
∈G / ad ≠ 0} is a subgroup of G. 

Solution: Let  h1 and h2 be arbitrary elements of H , then h1 = ⎥
⎦

⎤
⎢
⎣

⎡

1

11

0 d
ba

 and h2 

= ⎥
⎦

⎤
⎢
⎣

⎡

2

22

0 d
ba

 .  Now (h2)-1 = ⎥
⎦

⎤
⎢
⎣

⎡ −

2

22

22 0
1

a
bd

da
 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

2

22

2

2

10

1

d

da
b

a
. 
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and  h1 (h2)-1 = ⎥
⎦

⎤
⎢
⎣

⎡

1

11

0 d
ba

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

2

22

2

2

10

1

d

da
b

a
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ +
−

2

1

2

1

22

21

2

1

0
d
d

d
b

da
ba

a
a

∈H because 

0
2

1

2

1 =/
d
d

a
a

. 

 

Example: Show that the set K = ⎥
⎦

⎤
⎢
⎣

⎡
10

1 b
 is a subgroup of the group H  

={ ⎥
⎦

⎤
⎢
⎣

⎡
d
ba

0
/ ad ≠ 0, a, b, c are all real numbers}. H is  group under matrix 

multiplication as binary operation. 

Solution: let k1 and k2 are two elements of K. we will show that k1 .k2∈K. let 

k1 = ⎥
⎦

⎤
⎢
⎣

⎡
10

1 1b
 and k2 = ⎥

⎦

⎤
⎢
⎣

⎡
10

1 2b
, then (k2)-1 = ⎥

⎦

⎤
⎢
⎣

⎡ −
10

1 2b
  

and k1  (k2)-1 = ⎥
⎦

⎤
⎢
⎣

⎡
10

1 1b
 ⎥

⎦

⎤
⎢
⎣

⎡ −
10

1 2b
= ⎥

⎦

⎤
⎢
⎣

⎡ +−
10

1 12 bb
 which is an element of K. 

Hence K is a subgroup H. 

 

1.6.4 Note: The result in Theorem 1.6.3 is true when G is finite.  For example if we 

take G an infinite set say N (set of natural numbers) then G is closed under 

multiplication but it is not   a group. 

 

1.6.5 Theorem: Prove that intersection of two subgroups of a group G is again a 

 subgroup of G. 
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Proof: Let H and K are two subgroups of a group G. If  H ∩ K = {e} then we 

have nothing to prove, so suppose that h, k ∈ H∩ K. We will show that hk-1 

belongs to H ∩  K.  

As  h∈ H ∩  K ⇒ h∈ H  and h∈ K . 

Similarly      k∈ H ∩  K ⇒ k∈ H  and k∈ K. 

Now             h∈ H and k∈ H ⇒ hk-1∈ H   (H is a subgroup of G)  

Similarly      h K and k∈ K ⇒ hk-1∈ K   (K is a subgroup of G) 

Adding both results we get that hk-1∈ H ∩ K.  

 

1.6.6 Theorem: Prove that arbitrary intersection of subgroups of a group G is a 

subgroup of G. 

Proof: Let G be a group and let {Ht: t∈T} be any family of subgroups of G. 

here T is an index set and is such that for all t∈T, Ht is a subgroup of G. Let 

I
Tt

tHH
∈

= ={x∈G : x∈Ht ∀ t ∈T. 

Now let a and b be any two elements of H. then  

 TtHaHa t
Tt

t ∈∀∈⇒∈
∈
I    and  

 TtHbHb t
Tt

t ∈∀∈⇒∈
∈
I . 

 But for all t∈T, Ht is a subgroup of G. therefore a ∈ Ht, b ∈ Ht ⇒ ab-1 ∈ Ht ∀ 

t ∈T. Consequently TtHab
Tt

t ∈∀∈
∈

−
I

1 . There fore I
Tt

tH
∈

 is a subgroup. 

 

1.6.7 Theorem: Prove that union of two subgroups of a group G is again a subgroup 

of G if and only if one is contained in the other. 



MCA-205 23 
 

Proof: Suppose H and K are two subgroups of a group G. Let us suppose that 

H⊂K or K⊂H then H∪K is equal to H or K. But H and K both are subgroup of 

G , therefore H∪K= H or K is also a subgroup. 

Conversely, suppose that H∪K is a subgroup of G. Let us assume that H is not 

a subset of K and K is not a subset of H. 

 Now H is not subset of K ⇒ ∃   h∈H such that h∉K  (1) 

 Also K is not a subset of H  ⇒ ∃ k∈K such that k∉H (2) 

But by (1),  h∈ H∪K and by (2), k∈ H∪K so hk ∈ H∪K. Let hk = t, therefore 

t∈ H or K. If t belongs to H then k = h-1t belongs to H, a contradiction. Hence t 

does not belong to H. Similarly we can show that t does not belong to K. It 

shows that t does not belongs to H∪K, a contradiction and hence a 

contradiction to our assumption that H is not a subset of K and K is not a 

subset of H. Hence either H is subset of K or K is subset of H. 

 

1.7  COSET 

1.7.1 Definition: For a group G and subgroup H of it we define a*H ={a*h/ h∈H}. 

This set is called coset of H in G generated by a. a*H is called left coset of H 

in G. Similarly H*a is called right coset of H in G.* is binary operation on G. 

Example Take G=(I,+) and H ={2I,+} then 0+Hand 1+H are two different left 

cosets given as  

0+H = {0+h/h∈H} = H which is set of even integers and  

1+H = {1+h/h∈H} which is set of odd integers. We also note that I is union of 

H and 1+H. 

 

1.7.2 Theorem: If  c∈ aH, then cH = aH and c∈ Ha, then Hc = Ha   

Proof: Since c∈ aH ⇒ c =  ah1 for some h1∈H,  

But then ch = ah1h = ah2 ∈ aH. 
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As ch is arbitrary element of cH, therefore cH⊆aH. 

Now c=ah1 ⇒ a= c (h1)-1 ⇒ ah = c (h1)-1h ∈ cH,  

Therefore  aH ⊆ cH. Hence the result is over. Similarly we can prove second 

part. 

 

1.7.3  Theorem: For a subgroup H of G, if aH and bH are two left cosets of H in G, 

then either aH = bH or aH ∩ bH = φ. 

Proof: If aH ∩ bH = φ then we have nothing to prove. 

 So suppose that c∈ aH ∩ bH.  

This implies that c∈ aH and c∈bH.  

 But c∈ aH   

 ⇒ cH = aH  

and  c∈ bH  

 ⇒ cH = bH  (by theorem 1.7.2). 

Therefore aH = bH . 

 

1.7.4 Theorem: If a and b are any two element s of a group G and H any subgroup 

of G, then  

Ha = Hb if and only if ab-1∈ H and aH = bH  if  and only if  a-1 b ∈ H. 

Proof:  Since a is an element of Ha then  

Ha = Hb ⇒ a ∈ Hb ⇒ ab-1∈ Hbb-1 = H. 

Conversely let us suppose that  

 ab-1∈ H ⇒  ab-1b∈ Hb  ⇒ a ∈ Hb, but then by  theorem 1.7.2 Ha = Hb. 

Similarly we can prove other part . 
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1.7.5 Theorem :If we define that Hba mod≅  if and only if ab-1 ∈H. then this is 

an equivalence relation and class of a mod H is right coset of H in G generated 

by b. 

 

Proof: We know a relation is called equivalence relation if it is reflexive, 

symmetric and transitive. Since aa-1 = e ∈H i.e. relation is reflexive. 

Also Hba mod≅   ⇒ that  ab-1 ∈H  which further gives us that  

(a b-1 )-1  = ba-1  ∈H ⇒ Hab mod≅ i.e. relation is symmetric. Further 

Hba mod≅  and Hcb mod≅  

⇒ That ab-1 ∈H and bc-1 ∈H ⇒ ab-1 bc-1 ∈H ⇒ ac-1 ∈H i.e. Hca mod≅ . 

Hence this relation is an equivalence relation. Now class of a is denoted as 

[a]={b∈H such that Hab mod≅ }. Let b∈ [a] then Hab mod≅  which 

implies that ba-1∈H i.e. ba-1 a∈Ha ⇒ b ∈Ha there fore [a] ⊆ Ha. Conversely 

let suppose that h∈ Ha is an arbitrary element of Ha. But h∈ Ha ⇒ ha-1∈h i.e. 

Hah mod≅ . Hence h ∈ [a] giving us that Ha ⊆ [a] .there fore [a] =Ha. 

Hence the result is proved. 

 

1.7.6 Note: We know that for every g∈G we have a coset gH such that   g∈ gH. 

Hence we can write U
Gg
gHG

∈
= = U

gg
Hg

∈
 

Example: Find all left cosets of V4 ={I , (1 2)(3 4) ,(1 3)(2 4) , (1 4)(2 3)} in 

S4  

Solution: First we will see that V4 is a group. Being a subset of S4 associative 

law is followed by elements of V4. Also inverse of (1 2)(3 4) is (1 2)(3 4) as 

 (1 2) (3 4). (1 2)(3 4) =I. Similarly each element of V4 is inverse of itself. 

Now V4 is first left coset which is {I, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 
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For second left coset we take (1 2 3) V4 = {(1 2 3) I, (1 2 3)(1 2)(3 4), (1 2 3) 

(1 3)(2 4), (1 2 3)(1 4)(2 3)} 

 = {(1 2 3), (2 4 3), (1 4 2), (1 3 4)} 

 

For third left coset we take 

 (1 2 4) V4 = {(1 2 4) I, (1 2 4)(1 2)(3 4), (1 2 4) (1 3)(2 4), (1 2 4)(1 4)(2 3)} 

= {(1 2 4), (2 3 4),  (1 4 3) (1 3 2)}. 

 

For forth-left coset we take  (1 2 3 4) V4  

= {(1 2 3 4) I, (1 2 3 4)(1 2)(3 4), (1 2 3 4)  (1 3)(2 4), (1 2 3 4)(1 4)(2 3)} 

= {(1 2 3 4), (2 4), (1 4 3 2), (1 3)} 

 

For fifth left coset we take (1 2 4 3) V4  

= (1 2 4 3) I, (1 2 4 3)(1 2)(3 4), (1 2 4 3) (1 3)(2 4), (1 2 4 3)(1 4)(2 3)}  

={(1 2 4 3), (2 3),  (1 4), (1 3 4 2)}. 

 

For sixth left coset we take (1 3 2 4) V4  

= {(1 3 2 4) I, (1 3 2 4)(1 2)(3 4), (1 3 2 4) (1 3)(2 4), (1 3 2 4)(1 4)(2 3)} 

= {(1 3 2 4) , (1 4 2 3) , (3 4) ,  (1 2)}. 

 

 Here we see that union of all left cosets is {I, (1 2), (1 3), (1 4), (2 3), (2 4), 

(3 4), (1 2 3), (1 2 4), (1 3 4), (2 3 4), (1 3 2), (1 4 2), (1 4 3), (2 4 3), (1 2 3 4), 

(1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2)(3 4), (1 3)(2 4), (1 4)(2 

3)} which is S4. i.e. S4 = U
Gg
gHG

∈
= . 

Now V4 is first right coset which is {I, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 
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For second right coset we take V4(1 2 3) = {I (1 2 3), (1 2)(3 4) (1 2 3),         

(1 3)(2 4) (1 2 3), (1 4)(2 3) (1 2 3)} 

 = {(1 2 3), (1 3 4) , ( 2 4 3), (1  4  2)} 

 

For third right coset we take 

V4 (1 2 4) = {I (1 2 4), (1 2)(3 4) (1 2 4),  (1 3)(2 4) (1 2 4), (1 4)(2 3) (1 2 4) } 

= {(1 2 4), (1  4  3),  (1 3  2) ,(2  3  4)}. 

 

For forth right coset we take   V4 (1 2 3 4) 

= { I (1 2 3 4), (1 2)(3 4) (1 2 3 4),  (1 3)(2 4) (1 2 3 4), (1 4)(2 3) (1 2 3 4) } 

= {(1 2 3 4), (1  3), (1 4 3 2), (2  4)}. 

 

For fifth right coset we take V4  (1 2 4 3) 

= {I  (1 2 4 3),  (1 2)(3 4) (1 2 4 3),  (1 3)(2 4) (1 2 4 3), (1 4)(2 3) (1 2 4 3) }  

={(1 2 4 3),  (1 4), (2 3) , (1 3 4 2)}. 

 

For sixth right coset we take V4 (1 3 2 4) 

= {I (1 3 2 4), (1 2)(3 4) (1 3 2 4),  (1 3)(2 4) (1 3 2 4) , (1 4)(2 3) (1 3 2 4) } 

= {(1 3 2 4), (1 4 2 3), (1 2) , (3 4) }. 

 

 Here we see that union of all right cosets is {I, (1 2), (1 3), (1 4), (2 3), (2 

4), (3 4), (1 2 3), (1 2 4), (1 3 4), (2 3 4), (1 3 2), (1 4 2), (1 4 3), (2 4 3), (1 2 3 

4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2)(3 4) ,(1 3)(2 4) ,      

(1 4)(2 3)}  which is S4 .i.e. S4 = U
gg
Hg

∈
 

1.7.7 Note: Above result has very fine applications, which are                                           
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(1) Order of every subgroup of a group divides order of group. (Order of a 

group means the number of elements it has. It is also called Lagrange’s 

theorem)  

(2) Order of every element of G divides order of group G. (Order of element 

g∈G means smallest positive integer t such that g t =e, identity of G.) 

(3) Number of distinct left or right cosets of H in G is called index of H in G 

.It is given by 
)H(O
)G(O . 

 

1.8  KEY WORDS  

Binary operation, groups subgroups, permutation, identity, inverse. 

 

1.9 SUMMERY: This chapter contains definition of groups, subgroups, 

permutation group, cosets and some theorem on groups 

 

1.10 SELF ASSESSMENT QUESTIONS 

 

(1)  Proves that set of all ( 22 × ) non-singular matrices is a group under 

multiplication of matrices. 

 

 (2)  Let G ={a0 , a1 , a2 , a3 , a4 , a5 , a6 }   where  

ai . aj = ai+j       if    i+j< 7 

ai . aj = ai+j-7     if     i+j  ≥ 7 .( for example a4 .a5 = a5+4-7 = a2.) 

  

(3) Find all the cosets of H={1,a3} in G ={1,a,a2,a3,a4,a5}such that a6=1 . 

 

(4)  Prove that group and subgroup have same identity. 
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(5) Prove that union of subgroup of G may or may not be a subgroup of G. 

 

(6) Prove or disprove whether the following is a group or not  

 

× 1 a b c 

      1  1 a b c 

      a a 1 c B 

      b b c 1 A 

      c c b a 1 

  

  Where 222 cba ==  =1, ab=c. Also find out a 1− , b 1− ,c 1− ,(ab) 1− . 

 

(7)     Prove that those elements of a group G which commute with the square of a 

given element b of G forms a subgroup H of G and those which commute with 

b it self form a subgroup of H. 

 

(8) (a) Can an abelian group have a non-abelian subgroup. 

 

 (b) Can a non abelian group have an abelian subgroup. 

 

(c) Can a non abelian group have a non-abelian subgroup. Give an example in 

support of your answer. 

 

(9) Prove that following table on relation of elements of set G = {0 1 2 3 4 5} 

multiplication mod 6 is not a group 
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 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 0 

5 5 0 1 2 3 4 

 

 

(10)  Let R be a group under multiplication and Q be a subset of R and is a group 

under addition . Can it be a subgroup of R? 

 

(11) Let G be the group of integer under addition .let Hn be the set of all integer 

which are multiple of fixed integer n. Show that it is a subgroup of G .is it a 

normal subgroup. Determine the index of Hn in G and write all the cosets of 

Hn in G. also find out Hn ∩ Hm. 

 

(12) Prove that set of all n th root of unity forms a group under multiplication   

Answer (1) Yes it is a group. 

 

(2) Yes it is a group. 

 

(3) It has three cosets given as H = {1,a3}, aH = {a,a4}and a2H= {a2,a5} it        

       is clear that their union is G. 

 

(6) Yes it is a group and a 1− =a , b 1− =b, c 1− =c,(ab) 1− = c. 
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(10) No it cannot be a subgroup because if it is a subgroup of R then Q and R 

must have binary operation. 

 

(11)  Hn ∩ Hm will contain set of all integers, which are multiple of t, where t 

is least common multiple of n and m. 

 

1.11 SUGGESTED READINGS 

(1) I.N. Herstein, Topics in Algebra, Wiley eastern Ltd., New Delhi, 1975. 

(2) Surjeet Singh  and Quazi Zameeruddin., Modern Algebra.  
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MCA-205: Mathematics –II (Discrete Mathematical Structures) 

Lesson No: 2     Written by Pankaj Kumar 

Lesson: Group theory - II    Vetted by Prof. Kuldip Singh 

 

STRUCTURE 

2.0 OBJECTIVE 

2.1 INTRODUCTION 

2.2 NORMAL SUBGROUP 

2.3 SEMI GROUP AND FREE SEMI GROUP 

2.4 APPLICATION OF ALGEBRAIC STRUCTURES GROUP IN 

MODULAR AIRTHMATRIC 

2.5 SOME DEFINITION AND RESULTS ABOUT CODE WORDS AND 

CODES 

2.6 COSET LEADER DECODING 

2.7 LANGUAGES 

2.8 FINITE-STATE MACHINES 

2.9 KEYWORDS AND SUMMARY 

2.10 SELF ASSESSMENT QUESTION 

2.11 SUGGESTED READINGS 

2.0 OBJECTIVE : Objective of this chapter is to define some more algebraic 

structure and to find their application in communication and computer. 

2.1 INTRODUCTION : In Chapter 1, we see that there are subsets of a given 

group becomes a group in itself under the same operation as in G. We call 

these subsets as sub-groups of G. In this chapter we define some other 

condition on subgroup of G. We have defined some more algebraic structure. 
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At last we have shown the applications of these algebraic structures in 

modular arithmetic, coding theory and finite state machine. 

2.2 N0RMAL SUBGROUP 

2.2.1 Definition: A subgroup H of group G is called a normal 

subgroup of G. If gH = Hg ∀ g ∈ G. 
 

2.2.2 Theorem : If G is commutative group, then prove that every 
subgroup of G is normal in G. 
Proof: Let H be a subgroup of G. Now for some C ∈ gH, C = gh, h ∈ H. Since 

h and g both are elements of G and G is commutative, therefore, gh=hg. As hg 

is element of Hg, therefore C ∈ Hg. But C is arbitrary element of gH, 

therefore gH ⊆ Hg.  

 Similarly we can show that Hg ⊆ gH. Hence gH = Hg ∀ g ∈ G. It 

proves the result. 

 

2.2.3 Theorem: A subgroup H of a group G will be normal in G if 
and only if       g–1hg ∈ H for all g ∈ G and h ∈ H. 
Proof: Let H be a normal subgroup of G, then by definition of normal 

subgroup gH = Hg ∀ g ∈G. On multiplying both sides by g-1, we get  that     g-

1gH = g-1 Hg ∀ g ∈G i.e  g-1Hg = H ∀ g ∈ G which implies that g-1 hg ∈ H ∀ 

h ∈ H and g ∈ G.  

 Conversely let us suppose that g-1hg ∈ H ∀ g ∈ G and h ∈ H. Now    g-

1hg ∈ H that implies gg-1hg ∈ gH ⇒ hg ∈ gH. As hg is general element of Hg, 

hence Hg ⊆ gH.  
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 Moreover number of elements in Hg is equal to number of elements in 

gH. Hence gH = Hg, i.e. H is normal in G. Hence the result is proved. 

2.2.4 Remark: Number of elements in Hg is equal to number of 

elements in gH and it can be shown by defining a mapping 

from gH to Hg as f: gH → Hg by f(gh) = h'g for some h' ∈ H. 
 

2.2.5 Theorem: Let G be a group. If index of subgroup H in G is 
two, then H is normal subgroup of G. 
Proof: As we know that H is a coset of H itself given by e ∈ G. If gH is 

another coset [Q  index of H in G is two] then 

G = H ∪ gH …  (i) [Q  G is union of all distinct cosets of H in G]. 

Similarly we can write G = H ∪ Hg  …  (ii) 

By (i) and (ii) we get that Hg = gH ∀ g ∈ G. i.e. H is normal in G. 

 

2.2.6 Theorem: A subgroup N of  a group G is normal in G if and only if the 

product of two-left coset of N in G is again a left coset in G. (or product of 

two right cosets of N in G is again a right coset). 

Proof: first we suppose that N is a normal subgroup of G. let aN and bN are 

its two left cosets of N in G given by a and b then   

(a N).(b N) = (a .(N b)N)   (By associative property of group G). 

       = a (b N) N   (Since N is normal therefore N b = b N ). 

       = ab N = cN   for ab = c which is again a left coset. 

Conversely suppose that 

   g1N . gN = g2 N  

 ⇒ (g2)-1  g1N . gN   ⊆ (g2 )-1 g2 N ⊆ N 

 ⇒ g1 N g N ⊆ N     where g1 =(g2 )-1 g2  ∀ g∈G. 
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        ⇒ Ng N ⊆  (g1)-1N     

      ⇒   Ng ⊆  (g1)-1NN-1=(g1)-1N       ∀ g∈G  (1) (For a subgroup N, 

NN-1=N ) 

But g∈ g N ⇒ g∈  (g1)-1N ⇒  g N =  (g1)-1N  ( by theorem 1.7.2 )   (2)  

 Now using (1) and (2) we get  

 Ng ⊆ g N  

As order of Ng  and  g N is same , therefore,  

  Ng = gN ∀ g∈G  

Hence  N is a normal subgroup of G . 

 

2.2.7 Theorem: Let  N and M be the  normal subgroups of a group G such that  

N∩M  = (e). Prove that for any n∈N, m∈M  we have nm =mn. 

Proof: Let us consider an element n-1m-1nm for n∈N and m∈M.  Because 

N is normal in G,  m-1nm belongs to N. Since n-1 also belongs to N, we 

have      n-1m-1nm∈N.   

 Similarly, as M is also normal,    n-1m-1n ∈ M and hence n-1m-1nm 

belongs to M. Therefore,  

   n-1m-1nm ∈ N∩M . 

But by given condition N∩M  = (e), therefore,  

 n-1m-1nm = e ⇒ mn n-1m-1nm  = mn  

  ⇒  nm  = mn. Hence the theorem is proved. 
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2.2.8 Theorem: If we define NM {nm / n∈ N, m∈ M}. Prove that if N is a normal 

subgroup of G then NM is also a subgroup of G. If both N and M are 

normal subgroups of G then NM is also a normal subgroup of G. 

Proof: Let nm and rt be two elements of NM. Then (rt)-1 = t-1 r-1 is in G 

.we will show that nm (rt)-1∈NM.  

 Since nm (rt)-1 = nm t-1 r-1 = n(m t-1 )r-1 (m t-1 )-1m t-1 . 

Now  r-1 belongs to N, therefore, (m t-1 )r-1 (m t-1 )-1 also belongs to N 

(because N is normal) and hence  n(m t-1 )r-1 (m t-1 )-1 belongs to N. 

Further  mt-1 belongs to M implies that  n(m t-1 )r-1 (m t-1 )-1m t-1  = nm 

(rt)-1 belongs to NM. Hence NM is a subgroup of G. 

 Now we will show that g-1nm g ∈ NM. As  

  g-1nm g =g-1ngg -1 m g 

belongs to NM { because g-1ng ∈N (N is normal in G) and g -1 m g ∈M (M 

is normal in G)}. Hence NM is a normal subgroup of G. 

 

Example: Show that V4 is normal in A4 where  V4 is {I , (1 2)(3 4) ,(1 3)(2 4) 

, (1 4)(2 3)} and  A4 is {I, , (1 2 3), (1 2 4), (1 3 4), (2 3 4), (1 3 2), (1 4 2), (1 

4 3), (2 4 3),  (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. 
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Solution: we will show that every left coset is equal to right coset. Now V4 

is first left coset which is {I, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} and 

corresponding   right coset  is {I, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. 

More over (1 2)(3 4)  V4 = (1 3)(2 4) V4 =  (1 4)(2 3) V4 = V4 = V4 (1 2)(3 4) = 

V4  (1 3)(2 4)  = V4 (1 4)(2 3). (by use of theorem 1.7.2) 

 

Now we calculate left coset of  V4  generated by (1  2  3) 
(1 2 3) V4 = {(1 2 3) I, (1 2 3)(1 2)(3 4), (1 2 3) (1 3)(2 4), (1 2 3)(1 4)(2 3)} 

 = {(1 2 3), (2 4 3), (1 4 2), (1 3 4)}. 

And corresponding right coset is  
V4 (1 2 3) = {I (1 2 3), (1 2)(3 4) (1 2 3), (1 3)(2 4) (1 2 3), (1 4)(2 3) (1 2 3)} 

 = {(1 2 3), (1 3 4), ( 2 4 3), (1  4  2)}. 

We get  (1 2 3) V4  = V4 (1 2 3). 

 (2 4 3)V4  =  (1 4 2) V4 =(1 3 4) V4 = (1 2 3) V4  = V4 (1 2 3). =V4 (1 3 4)  

= V4 (2 4 3) = V4 (1  4  2) . by use of theorem 1.7.2 

 

 For third left coset we get  

 (1 2 4) V4 = {(1 2 4) I, (1 2 4)(1 2)(3 4), (1 2 4) (1 3)(2 4), (1 2 4)(1 4)(2 3)} 

= {(1 2 4), (2 3 4),  (1 4 3) (1 3 2)}. 

For third right coset we get 

V4 (1 2 4) = {I (1 2 4), (1 2)(3 4) (1 2 4),  (1 3)(2 4) (1 2 4), (1 4)(2 3) (1 2 4)} 

= {(1 2 4), (1  4  3),  (1 3  2) ,(2  3  4)}. We get that (1 2 4) V4 =  V4 (1 2 4). 

 From above we get that each left coset of  V4 in A4 is equal to a right 

coset of  V4 in A4.  Hence V4  is normal in A4. 
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Example: Show by an example that we can find three subgroups E, F and G 

of a group such that E ⊂ F ⊂ G. E is normal in F and   F is normal G but E is 

not normal in G. 

Solution: Let us take S4 (symmetric group of degree 4 over the set{1, 2, 3, 

4}). Take E = {I , (1  2)}, F = V4  and G =A4. 

 First we se that E is a subset of F. More over E is also a group (See 

problem 1) under the same operation as F is. Therefore, E is a subgroup of F. 

Since index of E in F is two, therefore by Theorem 2.2.5, E is normal in F .By 

previous example F is normal in G. We will show that E is not Normal in G. 

for it we will show that there exist an element of G for which left coset of E is 

not equal to right coset of E.  

 

Calculate left coset of E given by (1  2  3) 

 (1  2  3)E =  { (1  2  3)I , (1  2  3)(1  2) } = {(1  2  3) , (2  3)} …….(1) 

 

And right coset of E given by (1  2  3) 

E (1  2  3) = { I (1  2  3) , (1  2)(1  2  3) } = { (1  2  3) , ( 1  3) }……(2) .we see 

that set given in (1) is not equal to set given in (2) so 

 (1  2  3)E ≠  E (1  2  3),therefore, E is not normal in G. 

 

2.2.7 Remark: For a finite group G, (g)0(G) = e ∀ g ∈ G. This result 
is due to Lagrange’s theorem. 
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2.3 SEMI GROUP AND FREE SEMI GROUP 

 

2.3.1 Definition: A set G is called semi group if there is a binary 
operation on G which is associative on G. i.e. if it is a binary 
operation then a . (b . c) = (a . b) . c ∀ a, b, c ∈ G. 
Example: Set of natural number is a semi group under ordinary addition. 

Since sum of two natural numbers is a natural number and 

a + (b + c) = (a + b) + c ∀ a, b, c ∈ N. 

 

2.3.3 Remark:  Every group is a semi group but converse may not be true. Above 

example shows this case. 

 

2.3.4 Definition: For a given set G = {a1, a2, …, an} we define a1, a2, a1, a2, … or 

a1a2a3a1a4a1 as the sequence of elements of G. If G* is set of all finite 

sequences and for α, β ∈ G* where α = a1a2 … ak, β = a1a2a1a2a3 then α.β = 

a1a2 … ak a1a2a1a2a3. Under this relation which is a binary operation on G* 

becomes a semi group is called free semigroup generated by set G. 

 

2.4 APPLICATION OF ALGEBRAIC STRUCTURE IN MODULAR 

ARITHMATICS. 

2.4.1 In modular arithmetic: As we know that set of all positive 
integers less than m and coprime to m forms a group under 
multiplication mod m, which is denoted by x

mZ . Now the 
number of positive integers less than m and co prime to m 
are exactly φ (m). Since for a ∈ x

mZ  we have ( )x
mZ0a  ≡ 1 mod 

m. In fact we have aφ(m) = 1 mod m for all positive integers. 
For example take m = 12, then x

12Z  = {1, 5, 7, 11}, it is group 
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under multiplication mod 12. As multiplication mod 12 is 
associative, 1 acts identity element and inverse of 1 is 1, 5 is 
5, 7 is 7 and 11 is 11 itself mod 12. 
Now by remark 2.2.7, aφ(12) = 1 mod 12, a ∈ x

12Z  

But φ(12) = φ(4) φ(3) = φ(22) φ(3) = 2×2 = 4. 

Hence a4 = 1 mod 12, as 14 = 1 mod 12, 54 = 1 mod 12, 74 = 1 mod 12 and 114 

= 1 mod 12. In fact 12 ≡ 52 ≡ 72 ≡ 112 ≡ 1 mod 12. 

 

2.4.2 Definition: Let a ∈ x
mZ , then order of a mod m is smallest 

positive integer t such that at ≡ 1 mod m and it is denoted by 

0(a). 
 

2.4.3 Note :In above example 0 (1) = 1, 0(5) = 2, 0(7) = 2, 0(11) = 

2. It is also clear that order of every element also divides 

order of group x
mZ . So we have an idea about order of a ∈ 

x
mZ  by order of x

mZ . 

 

2.4.4 Example: Find remainder when 3200 is divided by 7. 

Solution: Take group of integer mod 7 we see that {1, 2, 3, 4, 5, 6} are the 

positive integer less than 7 which forms group under multiplication mod 7. So 

3φ(7) ≡ 1 mod 7 i.e. 36 gives us remainder 1 when divided by 7.  

[Here 0 (3) = 6]. 

We write it as 6
7mod3  = 1. 

∴ 36 = (7k + 1) [Q  if an integer gives us remainder 1 when divided by 7 

it is of the form 7k + 1] 
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Now 3200 = 3(6 × 33 + 2) = (36)33.9 = (7k + 1)33 . 9 

Hence 200
7mod3  = 9 [Q  (7k + 1)33 gives us remainder 1 when divided by 7 

using the result that if a ≡ 1  mod m then at ≡ 1 mod m]  

Now 7mod9  = 2 

Hence 200
7mod3  = 2. 

2.5 SOME DEFINITION AND RESULTS ABOUT CODE WORDS AND 

CODES  

 

1. Code is made of code words. Weight of a code word is number of non-zero 

entries in that code word. For example 010101 is a code word of weight three. 

 

2. When we talk about linear code of length n, it mean code words are n tuples 

and set of all code words forms a subgroup of group of all n tuples [Here 5 

tuple mean a sequence contains exactly 5 elements i.e. 01010 is a 5 tuple]. 

If we take n tuple over the set {0, 1} then Bn is that set which contains all n 

tuple and is called set of binary n tuple. For example elements of B3 are 

{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1), (0,1,1), (1,1,1)} i.e. eight 

elements. The set Bn forms a group under component wise addition mod 2 i.e. 

(a, b, c) + (a', b', c) = (a + 2a1, b + 2b1, c + 2c1) 

∴ (1, 1, 0) + (0, 1, 0) = (1+0, 1+1, 0+0) = (1,0,0). 

Now we take a subset of B3 = {(000), (110), (011), (101)} it is a subgroup of 

group B3 under component-wise addition mod 2. then this is code of 3 tuples. 

 

3 Distance between two code words is the numbers of position at which they 

differ with each other for example distance between (101) and (110) is 2. 
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4. In this case we take received word and take its distance with code words. 

We choose that code word which has minimum distance with received word 

and assume that the above code word was sent. 

2.6 COSET LEADER DECODING  

Now we define coset leader decoding. As we know that if H is a subgroup of 

Bn, then Bn can be written as union of distinct cosets of H in Bn. Since 

received word is an n tuple lies in Bn and hence lies in a coset also we choose 

the word of minimum weight in a coset as coset leader and we subtract that 

word from received word and obtain the required code word which was sent. 

So we use cosets to obtain correct code word. 

For example in B3 we see that H = {(000), (101), (110), (011)} is a subgroup. 

Then we get following cosets. 

(0,0,0) + H={(0,0,0), (1,0,1), (1,1,0), (0,1,1)} 

(1,0,0) + H={(1,0,0), (0,0,1), (0,1,0), (1,1,1)} 

are two cosets. 

Here (0,0,0) is coset leader for first coset. 

And (1,0,0) is coset leader for second coset. 

Now if we receive (111) as a word we see that it lies in second coset with 

coset leader (1,00), hence we decode it to (111) – (1,00) = (011) is code word 

which was sent. 

2.7 LANGUAGES 

 We considered the set S* consisting of all finite strings of elements 

from the set S. There are many possible interpretations of the elements of S*, 

depending on the nature of S. If we think of S as a set of “words”, then S* may 

be regarded as the collection of all possible “sentences” formed from words in 

S. Of course, such “sentences” do not have to be meaningful or even sensibly 
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constructed. We may think of a language as a complete specification, at least 

in principle, of three things. First, there must be a set S consisting of all 

“words” that are to be regarded as being part of the language. Second, a subset 

of S* must be designated as the set of “properly constructed sentences” in the 

language. The meaning of this term will depend very much on the language 

being constructed. So if S is any set, then a subset of free semi group 

generated by S is called languages on S. 

2.8 FINITE-STATE MACHINES 

We think of a machine as a system that can accept input, possibly produce out 

put, and have some sort of internal memory that can keep track of certain 

information about previous inputs. The complete internal condition of the 

machine and all of its memory, at any particular time, is said to constitute the 

state of the machine at that time. The state in which a machine finds itself at 

any instant summarizes its memory of past inputs and determines how it will 

react to subsequent input. When more input arrive the given state of the 

machine determine (with the input) the next state to be occupied, and any 

output that may be produced. If the number of states is finite, the machine is a 

finite-state machine. 

Suppose that we have a finite set S = {s0, s1, …, sn}, a finite set I, and for each 

x ∈ 1, a function fx: S → S. Let F = |fx| x ∈ I|. the triple (S, I, F) is called a 

finite-state machine, S is called the state set of the machine, and the elements 

of S are called states. The set I is called the input set of the machine. For any 

input x ∈ I, the function fx describes the effect that this input has on the states 

of the machine and is called a state transition function. Thus, if the machine is 

in state is and input x occurs, the next state of the machine will be fx (is). 

Since the next state fx (is) is uniquely determined by the pair (is, x), there is a 

function F: S × I → S given by 
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F (is, x) = fx (is). 

The individual functions fx can all be recovered from a knowledge of F. Many 

authors will use a function F : S × I  S, instead of a set |fx| x ∈ I}, to define a 

finite-state machine. The definitions are completely equivalent. 

 

Example 1. Let S = {s0, s1} and I = {0, 1}. Define f0 and f1 as follows: 

F0 (s0) = s0, f1 (s0) = s1, 

F0 (s1) = s1, f1(s1) = s0. 

This finite-state machine has two states s0 and si and accepts two possible 

inputs, 0 and 1. The input 0 leaves each state fixed, and the input 1 reverses 

states. We can think of this machine as a model for a circuit (or logical) device 

and visualize such a device as in Fig. 2.1. The output signals will, at any given 

time, consist of two voltages, one higher than the other. Either line 1 will be at 

the higher voltage and line 2 at the lower, or the reverse. The first set of output 

conditions will be denoted s0 and the second will be denoted s1. An input 

pulse, represented by the symbol 1, will reverse output voltages. The symbol 0 

represents the absence of an input pulse and so results in no change of output. 

This device is often called a T flip-flop and is a concrete realization of the 

machine in this example. We summarize this machine in Fig. 2.2. The table 

shown there lists the states down the side and inputs across the top. The 

column under each input gives the values of the function corresponding to that 

input at each state shown on the left. 

The arrangement illustrated in Fig. 2.2 for summarizing the effect of inputs on 

states is called the state transition table of the finite-state machine. It can be 

used with any machine of reasonable size and in a convenient method of 

specifying the machine. 
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Fig. 2.1 Fig. 2.2 

 

Example 2: Consider the state transition table shown in Fig. 2.3. Here a and b 

are the possible inputs, and there are three states, s0, s1 and s2. The table shows 

us that 

fa(s0) = s0, fa (s1) = s2, fa (s2) = s1 

and     fb(s0) = s0, fb (s1) = s2, fb (s2) = s2 

  

 a B 

s0 s0 s0 

s1 s2 s1 

s2 s1 s2 

 

  fig. 2.3 

If M is a finite-state machine with states S, inputs I, and state transition 

functions {fx |x ∈ I}, we can determine a relation RM on S in a natural way. If 

is, sj ∈ S, we say that is RMsj if there is an input x so that fx (is) = sj. 

Thus is RMsj means that if the machine is in state is, there is some input x ∈ I 

that, if received next, will put the machine in state sj. The relation RM permits 

us to describe the machine M as a labelled digraph of the relation RM on S, 

where each edge is labelled by the set of all inputs that cause the machine to 

change states as indicated by that edge. We see that output in a finite state 

machine is an element of permutation group of input symbols. 
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2.9 KEYWORDS AND SUMMARY 

In this chapter we have shown the application of Algebraic structure. 

Keywords are, semigroup codes and finite state machine. 

2.10 SELF ASSESSMENT QUESTION 

1. Find the remainder when 2100 is divided by 11. 

2. Prove that a group is always a semigroup and converse may not be 

true. 

3. Define coset leader decoding on B4 taking its subgroup. 

4. Define outputs of a finite state machine. 

5 Show that E ={I, (1 2) is a group. 

 

2.11 SUGGESTED READINGS 

(1) I.N. Herstein, Topics in Algebra, Wiley eastern Ltd., New 

Delhi, 1975. 

(2) Surjeet Singh  and Quazi Zameeruddin., Modern Algebra.  

(3) Seymour Lepschutz, Finite Mathematics (International edition 

1983), McGraw-Hill Book Company , New York. 
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Lesson: Graph theory - I    Vetted by Prof. Kuldip Singh 

 

STRUCTURE 

3.0 OBJECTIVE 

3.1 INTRODUCTION 

3.2 GRAPH 

3.3 PATHS AND CIRCUITS 

3.4 SOME DEFINITIONS WITH EXAMPLES 

3.5 CONNECTED AND DISCONNECTED GRAPHS. 

3.6 MATRIX REPRESENTATION OF GRAPHS 

3.7 KEYWORDS AND SUMMARY 

3.8 SELF ASSESSMENT QUESTIONS 

3.9 SUGGESTED READINGS 

3.0 OBJECTIVE: Objective of this chapter is to gain some knowledge about 

graphs, which has wide application in computer net working, circuits etc. 

3.1 INTRODUCTION: In this chapter we have defined graph which is pictorial 

representation of relations on sets. We have defined directed graph, undirected 

graphs, paths, circuits and matrix associated with graphs. 

3.2 GRAPH: A pair of set {V, E}, V≠φ, constitute a graph. Elements of set V are 

called vertices while elements of set E are called edges or lines or curves. 

Generally lines and points of plane represent the edges and vertices of the 

graph. 

Note: 1. If V is a finite set then we say that graph is finite graph. 
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2. Each edge is represented by a pair of vertices say u and v, these vertices are 

called end point of edges we will denote it by E(u, v). 

3.2.1 Directed graphs 
If we put u and v as an ordered pair then edge is called directed from u to v 

and such a graph in which each edge is directed is called directed graph. For 

example, figures given below are directed graphs.            

        

>

>

>
>

 
      Fig. 3.1 

 

           
   Fig. 3.2 

Another example is graph of a relation is always directed graph. 

3.2.2 Undirected graph 
If a graph is not directed is called undirected graph in such graphs edges are 

given as E(u, v). Figure 3.3 and 3.4 are undirected graph 
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Figure 3.3      Fig. 3.4 

Note: (1) Edge E(u, u) is called a self loop. A graph with no self loop and no 

parallel edge is called a simple graph otherwise it is called non-simple. For 

example graph of a relation which is neither reflexive nor symmetric is simple 

and that of reflexive relation is not simple. Figure 3.5 and 3.6 are graph which 

are non-simple and simple respectively. 

             

     
Fig. 3.5   Fig. 3.6 

 

(2) Edges e1 and e2 are parallel edges if they have same vertices. Here e1 and 

e2 are parallel edges. 

           

    

a b
e1

e2  

Fig.3.7 

3.3 PATH AND CIRCUIT 
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 In the following figure, we have ),( 21 aae , ),( 32 aae , ),( 43 aae  ),( 54 aae , 

),( 65 aae  are the edges so that we move from a1 to a6 along these edges without 

using an edge more than once.  

 

     
       Fig. 3.8 

 Now we define the following: 
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3.3.1 Walk. Let G be a graph. Then a sequence of vertices v0, v1, 

v2, ……. vt each adjacent to the next and there is always an 

edge between vi, and vi+1,  is called a walk. The vertex v0 is 

called the initial vertex and the vertex vt is called terminate 

vertex of the path. Number of edges in a walk is called its 

length. A walk is called open walk if it has different 

beginning and end points and is called closed walk if it’s 

beginning and end points are same. 

  

3.3.2 Definition: A Trail is a walk having all distinct edges. A Path 
is a walk in which all vertices are distinct. A closed trail is 
called a Circuit. A circuit in which vertices (except the first 
and last) do not repeat is called a Cycle.  

 

3.3.3 Note: A path is always a trail but a trail need not be a path. 
Similarly a cycle is always a circuit but a circuit is not a cycle 
always. 
In figure given below for the graph aba, one is circuit while other is not a 

 circuit. 

 

                 
  Fig. 3.9             Fig. 3.10 

          is not a circuit                                         is a circuit and cycle 

In Figure 3.11, 
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     Fig. 3.11 

 (i) a b c d  a c is a trail as no edge repeats 

 (ii) a b c d e  ,  a d c b  and  a d e c b are paths 

 (iii)  a c d e c b a  is a circuit but not a cycle 

 (iv)  a b c a , a b c d a  and  a b c e d a  are cycles. 

3.4 SOME DEFINITIONS WITH EXAMPLES 

3.4.1 Degree of a vertex: In a non-directed graph G, the degree 
of a vertex v is determined by counting each loop on v twice 
and each other edge once. It is denoted by d (v). 
Example: d (V1) = 1, d (V2) = 2, d (V3) = 3 are the degrees of V1, V2 and V3 in 

following figure. 

                                                      
                                                            Figure 3.12 
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3.4.2 Theorem: The sum of d(vi) for each vi of a undirected graph 
G (V, E) is twice the number of edges in G 
Proof: Since G is undirected graph, each edge of G is incident with two 

vertices, therefore, contributes 2 to the sum of degree of all the vertices of the 

undirected graph. Therefore, the sum of degrees of all the vertices in G is 

twice the number of edges in G. 

Example: Draw a simple graph with three vertices i.e. draw a graph with no 

self loop and no parallel edges. 

Solution: Figure shown below is a simple graph. 

     
     Fig. 3.13 

3.4.3    REMARK                                 
If we see following graph 

  
Fig. 3.14 
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There are five edges in this graph in which edge e4 and e5 has same vertices (c, 

d). Therefore these edges are parallel edges. Further sum of degrees of the 

vertices is 2+2+3+3=10 = 2.5= 2 times the number of edges. 

 

3.4.4 Definitions 
1. Isolated vertex: A vertex on which no edge incident is called isolated 

vertex, i.e. a vertex v such that d (v) = 0. 

2. Null graph: A graph G = (V, E) such V ≠ φ and E = φ is called null graph, 

therefore null graph in which every vertex is isolated. 

 

3.4.5 Theorem: In a non-directed graph, the number of vertices of odd degree is 

always even. 

Proof: Let the number of vertices in a graph G be n.  Wlog suppose that the 

degree of first k vertices say v0, v1, v2, …. vk be even and remaining n-k 

vertices be odd i.e. the vertices with odd degree.  

 Now  ( ) ( ) ( )∑ ∑ ∑
= = +=

+=
n

i

k

i

n

ki
iii vdvdvd

1 1 1

   ... (1) 

But we know by Theorem (3.4.2) that L.H.S. of (1) is even. As d(vi) in first 

term of R.H.S. is even, therefore, ( )∑
=

k

i
ivd

1

 is also even. It gives us that 

( )∑
+=

n

ki
ivd

1

 must be even. But each d (vi) in that ( )∑
+=

n

ki
ivd

1

 is odd. Moreover we 

know that sum of odd number is even if they are taken even number of times. 

So here n-k must be even. i.e. odd number vertices in the graph must be even. 

Hence the proof is over. 
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3.5 CONNECTED AND DISCONNECTED GRAPHS. 

3.5.1 Definition: If in a graph we can move from any vertex to the 
any other vertex of the graph then such graphs are called 
connected graphs otherwise it is called disconnected graph. 
Simple we can say that if there exists a path between every 
pair of vertices the graph is called connected. 
For example, Graph in Fig. 3.15 is connected graph while in Fig. 3.16 it is 

disconnected. 

   
   Fig. 3.15          Fig. 3.16 

3.5.2 Definition 
1. Let G be a connected graph. The edge connectivity of G is the 

minimum number of lines (Edges) whose removal results in a 

disconnected or trivial graph. It is generally denoted by  δ(G). 

2. Vertex connectivity of a graph G is the minimum number of vertices 

whose removal results in a disconnected or trivial graph is called the 

vertex connectivity of G. It is generally denoted by k(G). 

3.5.3 Theorem. The edge connectivity of a connected graph G 
cannot exceed the minimum degree of G, i.e. λ(G) ≤ δ(G). 
Proof: Let G be a connected graph and v be a vertex of minimum degree in G. 

Then the removal of edges incident with the vertex v disconnects the vertex v 

from the graph G. Thus the set of all edges incident with the vertex v forms a 

cut set of G. But from the definition, edge connectivity is the edge 

connectivity of G cannot exceed the minimum degree of v, i.e. λ (G) ≤ δ (G). 
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3.5.4 Theorem: The vertex connectivity of a graph G is always 
less then or equal to the edge connectivity of G, i.e., k (G) ≤ 
λ (G). 
Proof: If graph G is disconnected or trivial the k (G) = λ (G) = 0. If G is 

connected and has a bridge e, then λ = 1. In this case K = 1, since either G has 

a cut point incident with e or G is K2.(∴ k (G) ≤ λ (G) when λ (G) = 0 or 1). 

Finally let us suppose that λ (G) ≥ 2. The G has λ lines whose removal 

disconnects G. Clearly the λ-1 of these edges produces a graph with a bridge e 

= {u, v}. For each of these λ-1 edges select an incident point which is different 

from u or v. The removal of these points (vertices) also removes λ-1 edges and 

if the resulting graph is disconnected then k ≤ λ-1 < λ. If not the edge e = {u, 

v} is a bridge and hence the removal of u and v will result in either a 

disconnected or a trivial graph. Hence k ≤ λ in each case and this completes 

the proof of the theorem. 

Thus, the vertex connectivity of a graph does not exceed the edge connectivity 

and edge connectivity of a graph cannot exceed the minimum degree of G. 

Hence the theorem given below. 

3.5.5 Corollary :For any graph G, k(G) ≤ λ (G) ≤ δ (G) is 
disconnected. 

 

3.5.6 Theorem :A graph is disconnected if V can be written as 
union of two non-empty, disjoint subsets V1 and V2 such that 
there exist no element of E whose one vertex in V1 and other 
in V2. 
Proof: Let us suppose that G be a connected graph. Take any vertex v in G. 

Let V1 be the collection of all these vertices, which are joined by paths to v. 

Since G is not connected V ≠ V1 [if V = V1 then G will be connected]. So take 
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v2 a set having all vertices of G which are not in all vertices of V which are not 

in V1. Therefore V1 and V2 are required subsets of V. 

 Conversely, suppose that V = V1∪V2, v1 ≠ Φ, v2 ≠ Φ, V1∩V2 = φ, then 

if we take v1 ∈ V1 and v2 ∈ V2 then there exist no edge between v1 and v2 i.e. 

graph is disconnected. 

 
3.5.7 Component of a graph means maximal connected subgraph 

of graph G (V, E). For example in Fig. 3.18. 
 

 

                     
 

     Fig. 3.18 

 

 {v1,v2,v3}, {v4,v5}, {v6,v7,v8,v9}, are components. Further it is clear that a 

 graph is connected if and only if it has exactly one component. 
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3.5.8 Theorem: A simple graph with m vertices and r components 
can have at most (m-r) (m – r + 1)/2 edges. 
Proof: Let G (V, E) be a graph with m vertices and r components let m0, m1, 

… mr be the number of vertices in each components of G (V, E). Then we 

have  

 Σmi = m and    mi  ≥ 1       (1) 

Now from (1) we get 

 
( )∑

=
−=−
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i
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1
1        (2) 

Squaring (2) on both sides we get 
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 We also know that in a simple graph with mi vertices have at most       

mi (mi -1)/2. Thus the maximum number of edges in G is  
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This completes the proof. 

 

3.5.9 Definition: Two vertices u and v in a digraph are said to be mutually 

reachable if G contains both directed u-v walk and a directed v-u walk. A 

digraph is said to be strongly connected if every two of its vertices are 

mutually reachable.  

 Example: Digraph shown in the figure 3.10 is strongly connected. 

3.6 MATRIX REPRESENTATION OF GRAPHS 

 Since we know that it is very easy to manipulate matrices. We take the 

matrix associated with different graphs. There are two ways of representing 

graph- (1) incidence matrix; (2) Adjacency matrix. 

 

3.6.1 Incidence matrix: Let v1, v2, ….. vn be n vertices and e1, e2, 
…, em be m edges of graph G. Then an n × m matrix  I = [aij] 
whose n rows correspond to n vertices and m columns 
corresponds to m edges where aij is as 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

ij

ji

ji

ij

vonloopselfiseif2

eedgeofintpoendannotisvif1

eedgeofintpoendannotisvif0

a  

this matrix I = [aij] is called incidence matrix. 

 

Example: Write the incidence matrix of the graph in Figure is 
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     Fig. 3.18 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1100
0110
1011
0001

4

3

2

1

4321

v
v
v
v

eeee

 

Some facts about incidence matrix of a graph without self loop. 

(i) Number of one’s in each column is exactly two since each edge incident 

exactly on two vertices. 

(ii) With given incidence matrix there always exists a graph. 

(iii) Sum of entries of any row of matrix gives us the degree of corresponding      

vertex. 

(iv) A row with all zeroes represents an isolated vertex. 
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3.6.2 Adjacency matrix: Let us consider a graph with n vertices 
say v1, v2, …, vn . Then a square matrix ]x[X ij= of order n, 
where  

 ⎪⎩

⎪
⎨
⎧

=

≠
=

jii

jiji
ij vvifvatloopsselfofnumberthe

vvifvandvbetweenedgesofnumberthe
x  

Example: Write the adjacency matrix of the graph given below: 

    
          Fig. 3.19 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1101
1110
0101
1010

4

3

2

1

4321

v
v
v
v

vvvv

 

 

Some facts about adjacency matrix 

(1)    X (G) is symmetric matrix. 

(2) If G has no self loops then diagonal entries of adjacency matrix are zero. If  

ith diagonal entry is 1, then it indicates that there is a self loop at ith vertex vi. 
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3.6.3 Adjacency matrix of a digraph (i.e. a directed graph) is defined as  

 A (G) = [xij] nxn  where G is a graph with n vertices and no parallel edges and 

⎪⎩

⎪
⎨
⎧

=

≠
=

jii

jiji
ij vvifvatloopsselfofnumberthe

vvifvtovfromdirectededgesofnumberthe
x  

By definition it is clear that the sum of elements of  ith  row of adjacency  

matrix is equal to the out going degree of vertex vi i.e. the number of edges 

going out of  vertex vi. 

 

Example: Write the Adjacency matrix of the diagraph given below: 

 
 Fig. 3.20 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0000
1000
0100
1110

v
v
v
v

vvvv

4

3

2

1

4321

 

Example: Write the adjacency matrix of the following digraph: 
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      Fig. 3.21 

 V1 v2 v3 v4 v5 

v1 0 0 0 0 1 

v2 1 0 0 0 0 

v3 1 0 0 1 0 

v4 0 1 1 0 0 

v5 0 0 0 0 0 

Therefore the matrix associated with above graph is 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00000
00110
01001
00001
10000

 

3.7 KEYWORDS AND SUMMARY 

In this chapter we have defined graphs, digraphs and matrix representation of 

graphs. Graphs, matrix, paths, circuits are key words. 

3.8 SELF ASSESSMENT QUESTIONS 

1. Write the adjacency matrix associated with the graph shown below: 
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2. Write incidence matrix of following graphs 

 

 
3 Draw a graph corresponding to given adjacency matrix. 

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0111
1000
1001
1010

  and  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
001
110

 

 

4. Draw the diagraph of the incidence matrix. 

    

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0111
0000
0000
1000
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3.9 SUGGESTED READING 

(1) Seymour Lepschutz, Finite mathematics (International edition 
1983), McGraw-Hill Book Company , New York. 

(2)  N.Deo, Graph Theory with application and computer science , 
Pentile Hall of India. 
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MCA-205: Mathematics –II (Discrete Mathematical Structures) 

Lesson No: 4     Written by Pankaj Kumar 

Lesson: Graph Theory II    Vetted by Prof. Kuldip Singh 

STRUCTURE 

4.0  OBJECTIVE 

4.1  INTRODUCTION 

4.2 WEIGHTED GRAPHS 

4.3  SHORTEST PATHS IN WEIGHTED GRAPHS 

4.4  TREE 

4.5  SPANNING TREES 

4.6  KURUSKALS ALGORITHM 

4.7 PRIMES ALGORITHMS 

4.8  POLISH ROTATION AND FLOW ION NETWORK 

4.9 KEY WORDS & SUMMARY 

4.10 SELF ASSESSMENT QUESTION 

4.11  SUGGESTED READINGS 

4.0  OBJECTIVE.  Objective of this chapter is to gain knowledge about trees, 

weighted graphs e.t.c. 

4.1  INTRODUCTION. In chapter 3 we studied some definition and matrices 

 associated with graph. In this chapter we will know about trees weighted 

 graphs and shorted path problem in graph theory. 

 
4.2 WEIGHTED GRAPHS 
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4.2.1 Weighted graph: A graph G (V, E) is called weighted graph of each of its 

edge is assigned by some positive real number. That real number is called the 

weight of that edge. Let us see the following figure 

 

                

v1

v3v2

v4

e1

e4

e2 e3

6

3 7

5  
 

 

Here weight of edge e1 is 6, e2 is 3, e3 is 7 and e4 is 5.   

4.3 SHORTEST PATH IN WEIGHTED GRAPH 

Let G be a simple weighted graph. The length of an edge from vertex i to a 

vertex j is denoted by dij. If there is no edge from vertex i to vertex j then dij = 

[ ]. The shortest path problem is to find the shortest possible path from a 

specified vertex A to another specified vertex L. There are several well-known 

procedures to solve this problem. Here we shall discuss an algorithm due to 

Dijkstra. 

 

4.3.1 Dijkstra algorithm 
This algorithm labels the vertices of the given graph. The algorithm starts by 

assigning a permanent label O to the starting vertex A and temporary label [ ] 
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to the remaining n-1 vertices. At each iteration in the algorithm, another vertex 

gets a permanent label according to the following rules: 

1.Every vertex j which is not yet permanently labelled gets a new temporary 

label whose value is given by 

min [old label of j, old label of i + dij], 

where i is the latest vertex permanently labelled, in the previous iteration and 

dij is the length of the edge between vertices i and j. If i and j are not joined by 

edge then dij = ∝ 

2. The smallest value among all the temporary labels is found and this 

becomes the permanent label of the corresponding vertex. In case of a tie, 

select any one of the vertices for permanent labelling. 

Steps 1 and 2 stated above are repeated alternately until the destination vertex 

L gets a permanent label. 

 

The first vertex to be permanently labelled is the starting vertex A. The second 

vertex to get a permanent label is the vertex nearest to A. The next vertex to be 

permanent label is the vertex nearest to A. The next vertex to be permanently 

labelled is the next nearest vertex to A. Thus the permanent label of each 

vertex is the shortest distance of that vertex from A. We illustrate Dijkstra 

procedure with the help of the following example: 

Example: find the shortest path from A to L in the following weighted graph: 
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Solution: We shall use an array of length eleven (no. of vertices) to show the 

temporary and permanent labels of the vertices as we go through the solution. 

The permanent labels will be shown enclosed in a square and the latest vertex 

assigned permanent label in the array is indicated by a mark ∗][ . The labelling 

proceeds as follows: 

 

i A B C D E F G H I J K L 

0. ∗]0[  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

1. ]0[  4 [3]* ∞ 10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2. ]0[  [4]* [3] ∞ 10 13 ∞ ∞ ∞ ∞ ∞ ∞ 

3. ]0[  [4] [3] [7]* 9 13 ∞ ∞ ∞ ∞ ∞ ∞ 

4. ]0[  [4] [3] [7] [9]* 13 11 ∞ ∞ ∞ ∞ ∞ 

5. ]0[  [4] [3] [7] [9] 13 [11]* 12 ∞ ∞ ∞ ∞ 

6. ]0[  [4] [3] [7] [9] 13 [11] [12]* ∞ 17 ∞ ∞ 

7. ]0[  [4] [3] [7] [9] [13]* [11] [12] ∞ 17 19 22 

8. ]0[  [4] [3] [7] [9] [13] [11] [12] [16]* 17 19 22 

9. ]0[  [4] [3] [7] [9] [13] [11] [12] [16] [17]* 19 22 
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10. ]0[  [4] [3] [7] [9] [13] [11] [12] [16] [17] [19]* 22 

11. ]0[  [4] [3] [7] [9] [13] [11] [12] [16] [17] [19] [22]*

 

 Thus the shortest distance from A to L is 22. Note that this method gives only 

the shortest distance. The shortest path can be easily obtained by going back word 

from the terminal vertex such that we go to that predecessor (vertex) whose label 

differs exactly by the length of the connecting edge. A tie indicates more than one 

shortest path. We can also determine the shortest path by keeping a record of the 

vertices from which each vertex was labelled permanently. This record can be stored 

in another array of length n, such that whenever a new permanent label is assigned to 

vertex j, the vertex from which j is directly reached is recorded in the jth position of 

this array. In the above example, the shortest path is A  B  E  H  L. 

4.4 TREE 

 

4.4.1 Definition: A tree is a connected graph without any circuits. 
From the definition it is clear that a tree is a connected and acyclic graph. It 

has neither self loops nor parallel edges and is depoted by the symbol T. Since 

trees are acyclic, we adopt a convention similar to that used for Hasse 

diagrams. Trees may be directed or non-directed. 

 

4.4.2 Directed tree.  A connected, a cyclic, directed graph is 
called a directed tree. 
The graph in Fig. is non-directed tree and graph shown in Fig. 4.2 is a directed 

tree 4.1. 
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    Fig. 4.1 and 4.2 

 

If T is a tree, then it has a unique simple non-directed path between each pair 

of vertices. A tree with only are vertex is called trivial tree. If T is a not a 

trivial tree then it is called a non-trivial tree. The vertex set (i.e., the of nodes) 

of a tree is a finite set. In most cases the vertices of a tree are labelled. 

 

4.4.3 Theorem: A simple non-directed graph G is a tree if and only 
if G is connected and has no cycles 
 

Proof: Let G be a tree. Then each pair of vertices of G are joined by a unique 

path, therefore G is connected. Let u and v be two distinct vertices of G. Such 

that G contains a cycle containing u and v. Then u and v are joined by at least 

two simple paths, one along one portion of the cycle and the other path 

completing the cycle. This contradicts our hypothesis that there is a simple 

unique path between u and v. Hence tree has no cycle. 

Conversely let G be a connected graph having no cycles. Let v1 and v2 be any 

pair of vertices of G and let there be two different simple paths say P1 and P2 
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from v1 to v2. then we can find a cycle in G as follows: Since the paths P1 and 

P2 are different, there must be a vertex say u, which is on both P1 and P2 but its 

successor on P1 is not on P2. If u is the next point on P1 which is also on P2, the 

segments of P1 and P2 which are between P1 and P2 form a cycle in G. A 

contradiction. Hence there is atmost one path between any two vertices of G. 

Which shows that G is a tree. 

 

4.4.4 Theorem : Any non-trivial tree has at least one vertex of 
degree 1. 

Proof: Let G be a non-trivial tree, then G has no circuits. Let v1 be any vertex 

of G. If deg (v1) = 1, then the theorem is at once established. Let deg (v1) ≠ 1 

move along any edge to a vertex v2 incident with v1. If deg (v2) ≠ 1 then 

continue to another vertex say v3 along a different edge. Continuing the 

process we get a path v1 – v2 – v3 – v4 - … in which none of the vi s is 

repeated. Since the number of vertices in a graph is finite, the path must end 

some where. The vertex at which the path ends is of degree are, since we can 

enter the vertex but cannot leave the vertex. 

 

4.4.5 Theorem A tree T with n vertices has exactly (n – 1) edges 
Proof: The theorem will be proved by mathematical induction on the number 

of vertices of a tree. If n = 1 then there are no edges in T. Hence the result is 

trivial. 

  If n = 2 then the number of edges connecting the vertices is one 

i.e., n – 1. Hence the theorem is true for n = 2. Assume that the theorem, holds 

for all trees with fewer than n vertices. Consider a tree T with n vertices. Let V 

be a vertex in T of degree 1 and let T' denote the graph obtained by removing 
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the vertex v and edge e associated with it from T.   Consider T' = T – 

e. T' has n – 1, vertices and fewer edges than T. If v1 and v2 are any two 

vertices in T', then there is a unique simple path from v1 to v2 which is not 

affected by the removal of the vertex and edge. T' is connected and no edges in 

it, therefore T' is a tree T' has n-1 vertices and n – 1 – 1 = n – 2 edges. T has 

are more edge than T'.  

  Therefore, the number of edges in T = n – 2 + 1 = n – 1. Hence 

T has exactly   n – 1 edges. 

 

4.4.6 Definition. If G is connected graph and u and v are any two 
vertices of G, the length of the shortest path between u and v 
is called the distance between u and v and is denoted by d 
(u, v). 
The distance function on defined above has the following properties. If u, v 

and w are any three vertices of a connected graph then. 

(i) d (u, v) ≥ and d (u, v) = 0 iff – u = v 

(ii) d (u, v) = d (v, u) 

and (iii) d (u, v) ≤ d (u, w) + d (w, v) 

from the above it is clear that distance in a graph is a metric. 

 

Example: In the graph shown in Fig. 4.3 
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     Fig. 4.3 

 

4.5 Spanning tree 

Let G be a connected graph. The sub graph H of G is called a spanning tree of     

G if 

(i) H is a tree and  

(ii) H contains all the vertices of G. 

 

Example. In Fig. 4.4 H is spanning tree of Fig. 4.4. 

 

    
    Fig. 4.5    Fig. 4.4 
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4.5.2 Minimal spanning tree : Let G be a connected weighted 
graph. A minimal spanning tree of G is a spanning tree of G 
whose total weight is as small as possible. 
There are various methods to find a minimal spanning tree in connected 

weighted graph. Here we consider algorithms for generating such a minimal 

spanning tree. 

 

4.5.3 Algorithm 
A connected weighted graph with n vertices. 

Step 1: Arrange the edges of G in the order of decreasing weights. 

Step 2: Proceed sequentially, and delete each edge of G, that does not 

disconnect the graph G until n – 1 edges remain. 

Step 3: Exit. 

Example 1: Consider the graph G given below: 

 

   
     Fig. 4.6 

Number of vertices in G = n = 6. 

We apply the algorithm given above. 
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We order the edged by decreasing weights and delete the edges of G until       

n – 1 =  6 – 1 = 5 edges remain. 

Edges (v2, v3) (v1, v6) (v1, v3) (v2, v5) (v3, v5) (v2, v6) 

Delete Yes Yes Yes No No Yes 

Edges (v1, v5) (v4, v6) (v2, v4)    

Delete No No No    

 

The minimal spanning tree of G is shown in Fig. 4.7. 

   
     Fig. 4.7 

The weight of the minimum spanning tree = 8 + 7 + 5 + 5 + 2 = 27. 

4.6 KURUSKAL  ALGORITHM 

Input: A connected weighted graph G with n vertices. 

Step 1: Arrange the edges of in order of increasing weights and select the edge 

with minimum weight. 

Step 2: Proceed sequentially, add each edge which does not result in a cycle 

until n – 1, edges are selected. 

Step 3: Exit. 

Example: Consider the graph in Fig. 4.6. 

We have n = 6 
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We order the edges by increasing weights (V2, V4) is edge with minimum 

weight. Select the edge (V2, V4) we successively add edges to (V2, V4), 

without forming cycles until 6 – 1 = 5 edges are selected. This yields: 

 

Edges (V2, 

V4) 

(V1, 

V5) 

(V4, 

V6) 

(V2, 

V6) 

(V3, 

V5) 

(V1, 

V3) 

(V1, 

V6) 

(V2, 

V5) 

(V2, 

V3) 

Weight 2 5 5 6 7 8 8 8 10 

Add? Yes Yes Yes No Yes No Yes No No 

 

Edges in the minimum spanning tree are 

(V2, V4), (V1, V5), (V4, V6), (V3, V5), (V1, V6) 

The resulting minimal (optimal) spanning tree is shown in Fig. 4.8. 

 

 

   
     Fig. 4.8 

We apply the steps of Kruskal’s algorithm to the graph of Fig. 8.96; as 

follows: 

(V2, V4) is the edge with minimum weight, therefore we select the edges    

(V2, V4). 
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     Fig. 4.9 (a) 

 

The next edge with minimum weight (V1, V5), selection of (V1, V5) does not 

result in a cycle. 

 

∴ edge (V1, V5) is selected. 

 

    
     Fig. 4.9 (b) 

 

The edge to be considered, next is (V4, V6). 

The next edge to be selected is (V4, V6). 
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     Fig. 4.9 (c) 

 

Selection of the edge (V2, V6) for the spanning tree results in a cycle. 

Therefore (V2, V6) is not selected we consider the edge (V3, V5) selection of 

edge (V3, V5) does not result in a cycle. Hence (V3, V5) is selected. 

 

   
 

     Fig. 4.9 (d) 

 

Next we consider the edge (V1, V3) from the list. Selection of the edge (V1, 

V3) result in a cycle. Therefore edge (V1, V3) is not selected. Consider the 

edge (V1, V6) selection of edge (V1, V6) does not result in a cycle. Hence (V1, 

V6) is selected. 
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Number of edges selected is 5. We stop, and obtain the spanning trees as 

shown in Fig. 4.9(e). 

 

    
 

     Fig. 4.9 (e) 

 

The weight of the minimal spanning tree. 

= 2 + 5 + 5 + 7 + 8 = 27 

4.7 PRIMS ALGORITHM 

Input: A connected weighted graph G with n vertices. 

Step 1: Select an arbitrary vertex v1 and an edge e1 with minimum weight 

incident with vertex v1. 

Step 2: Having selected the vertices v1, v2, …, v1 and e1, e2, …, ei-1; select an 

edge ei such that ei connects a vertex of the set (v1, v2, …, vi) and a vertex of V 

= (v1, v2, …, vi) and of all such edges ei has the minimum weight. 

Step 3: Stop if n – 1, edges are selected, else go to step 2. 

 

Example 1: Consider the graph shown in Fig. 4.10 
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     Fig. 4.10 

Let e1 = (V1, V2), e2 = (V2, V3) 

   e3 = (V3, V4).e4 = (V4, V1) 

   e3 = (V2, V5) and e6 = (V4, V6). 

Denote the edge of G. 

We apply prims algorithm to the graph as follows: 

The edge e3 = (V3, V4) is an edge with minimum weight. Hence we start with 

the vertex V3 and select the edge e3 incident with v3. 

 

      
     Fig. 4.11 (a) 
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We next consider the edges connecting a vertex {V3, V4} with the vertex of 

the set V – {V3, V4}. We observe that e6 the edge with minimum weight. 

 

     
     Fig. 4.16 (b) 

Consider the edges connecting the vertices of the set {V3, V4, V6} with the 

vertices of V – {V3, V4, V6}. The edge e2 has the minimum weight. The edge 

e2 is selected. 

   
    Fig. 4.11 (c) 

 

Of the connecting the vertices of {V2, V3, V4, V6}; with the vertex set V – 

{V2, V3, V4, V6}, e4 has minimum weight, therefore e4 is selected. 
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     Fig. 4.11 (d) 

 

e1, e5 are the edges remaining. e5 is the only edge connecting {V1, V2, V3, V4, 

V5, V6} and {V5} such that the inclusion of e5 does not result in a cycle. Hence 

e5 is selected. 

Since number of edges selected is 5 we stop. 

The minimal spanning tree obtained is shown in Fig. 4.11 (e). 

  
    Fig. 4.11 (e) 

 

Weight of the minimal spanning tree 

= 2 + 4.8 + 5 + 6.3 + 12.5 

= 30.6. 
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4.7.1 Expression trees: Algebraic expressions involving addition, 

subtraction, multiplication and division can be represented as 

ordered rooted trees called expression trees. The arithmetic 

expression 3 + 5 × 9 – 7 × 62 can be represented as the tree 

shown in Fig. 4.12. 
 

   
     Fig. 4.12 

The variables in the algebraic expression appear as the other vertices. In the 

polish prefix representation, we place the binary operational symbol before the 

argument and avoid parentheses. The expression {(a – b)/(c × d) + e} can be 

expressed as i – ab + × cde. 

 

Example: Write the following expression as a tree 

[(a × b) × c + (d + e) – (f – (g × h)] 

 

Solution: The arithmetic expression [(a × b) × c + (d + e) – (f – (g × h))] can 

be represented as the tree. 
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   Fig. 4.13 

 

 

4.7.2 Definition :A tree in which there is exactly one vertex of 
degree two, and each of the remaining vertices of degree 
one or three, is called a binary tree. 

 

Example: Show that the number of vertices in a binary tree is odd. 

Solution: Let T be a binary tree with n vertices. T contains exactly one vertex 

of degree 2 and the remaining vertices of T are of degree one or three. 

Therefore number of odd degree vertices in T is n – 1. But the number of odd 

degree vertices in a graph is even. Therefore n – 1 is even. Hence n is odd. 

4.8 POLISH NOTATION AND FLOW ION NETWORK 

4.8.1 Definition: The process of visiting each vertex of a tree in 
some specified order is called searching the tree or walking 
or traversing the tree. 
We now discuss methods of searching a tree. 
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1. Preorder search method 

Input: The root v of a binary tree. 

Output: Vertices of a binary tree using pre-order traversal 

1. Visit v 

2. If v1 (left child of v) exists, then apply the algorithm to (T (v1), (v1) 

3. If VR (right child of v) exists, then apply this algorithm to (T (vR), vR). 

End of Algorithm preorder. 

In other words, preorder search of a tree consists of the following steps. 

 

Step 1. Visit the root. 

Step 2. Search the left subtree if it exists. 

Step 3. Search the right subtree if it exists. 

 

Example: Find binary tree representation of the expression 

(a – b) × (c + (d ÷ e) 

and represent the expression in string form using pre-order traversal. 

 

Solution: In the given expression, x is the central operator and therefore shall 

be the root of the binary tree. Then the operator- acts as v1 and the operator + 

acts as vR. Thus the tree representation of the given expression is 
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The result of the pre-order traversal to this binary tree is the string 

x – ab + c ÷ de 

This form of the expression is called prefix form or polish form of the 

expression 

(a – b) × (c + (d ÷ e)) 

In a polish form, the variables a, b, c, …, are called operands and - +, x, ×, ÷ 

are called operators. We observe that, in polish form, the operands follows the 

operator. 

 

Example: Represent the expression 

(A + B) * (C – D) 

as a binary tree and write the prefix form of the expression. 

Solution: Here * is the central operator. Further + and – operators are vt and 

vR. Hence the binary tree is 
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Using pre-order traversal, the prefix expression for it is 

* + AB – CD 

 

4.8.2 Procedure to evaluate an expression given in polish 
form 

To find the value of a polish form, we proceed as follows: 

Move from left to right until we find a string of the form K xy, where K is 

operator and x, y are operands. 

Evaluate x K y and substitute the answer for the string K x y. Continue this 

procedure until only one number remains. 

Example: Find parenthesized form of the polish expression 

- + ABC 

Solution: The parenthesized form of the given polish expression is derived as 

follows: 

- (A + B) C 

(A + B) – C 

The corresponding binary tree is 
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Example: Evaluate the polish form 

x – 64 + 5 ÷ 22 

Solution: We have the following steps in this regard 

1. × (6 – 4) + 5 ÷ 22 

2. × 2 + 5 ÷ 22 

3. × 2 + 5 (2 ÷ 2) 

4. × 2 + 51 

5. × 2 (5 + 1) 

6. × 26 

7. 2 × 6 

8. 12, which is the required value of the expression. 

 

4.8.3 P0ST ORDER SEARCH METHOD 
Algorithm 

Step 1. Search the left sub tree if it exists. 

Step 2. Search the right sub tree if it exists 

Step 3. Visit the root 

End of algorithm 

 

Example: Represent the expression 
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(A + B) * (C – D) 

as a binary tree and write the result of post order search for that tree. 

Solution: The binary tree expression (as shown earlier) of the given algebraic 

expression is 

   
 

The result of postorder search of this tree is 

AB + CD –* 

This form of the expression is called postfix form of the expression or reverse 

polish form of the expression. 

In postfix form, the operator follows its operands. 

 

Example: Find the parenthesized form of the postfix form 

ABC ** CDE +/- 

Solution: We have 

1. ABC ** CDE +/- 

2. A (B * C) * C (D + E)/- 

3. (A*(B*C)) (C/ (D + E))- 

4. (A * (B * C)) – (C / (D + E)) 

The corresponding binary tree is 
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Example 8.19.10. Evaluate the postfix form 

21 – 342 ÷ + × 

 

Solution. We have 

21 – 342 ÷ + × 

= (2 – 1) 342 ÷ + × 

= 13 (4 ÷ 2) + × 

= 132 + × 

= 1 (3 + 2 )× 

= 15 × 

= 1 × 5 

= 5. 

4.9  KEY WORDS AND SUMMARY 

In this chapter we studied weighted graph, trees, some algorithms about 

shortest path in graphs. Weighted graph, Trees. Prime Algorithm are 

keywords. 
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4.10  SELF ASSESSMENT QUESTION 

 

Q (1) Use shortest path algorithm to find a shortest path from A to G in the 

weighted graph. 

 

 

A

B E

G

FC

D
30

40
8

20
10

50
19

6

12

35

23

 
 

 

Q (2) Evaluate the expression given in polish form 

 

(a) 21 - 342 ÷ + ×. 

 

(b) AB + CD –  
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5.0 OBJECTIVE:  Objective of this chapter is to study algebraic structure like 

Boolean algebra, which has much application in computers. 

 

5.1 INTRODUCTION: In this chapter we have defined one more algebraic. We 

have defined partial order relation Boolean algebra, lattices and logic gates 

with their truth tables 

 

5.2   PARTIALLY ORDER RELATION: 

5.2.1 Definition - Let A be non empty set, then the set A×A= {(a, b)  | a, b∈A} is 

called Cartesian product of A with itself. 
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Any subset R of A×A is called a relation on A. If R satisfies the following 

conditions 

(1) R is reflexive i.e. (a, a) ∈R for all a∈A. 

(2) R is antisymmetric i.e. (a, b) ∈ R and   (b, a) ∈ R ⇒ a=b.  

(3) R is called transitive i.e. if (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R.   

 Then R is called partial ordered relation.  A set A together with partial 

order relation R is called partially ordered set or poset and is generally denoted 

by      (A, ≤). 

 

Example: Let T be any non empty set, then its power set p(T)(i.e. set of all 

subsets of T) is a partially ordered set under the relation that A ≤ B iff A⊆B. 

(1) Since A⊆A for all A∈ P(T), i.e. (A ≤ A) ∀  A∈ P(T), R is reflexive 

relation. 

 (2) If A⊆B, B⊆A, ⇒ A=B i.e. relation is antisymmetric 

(3) If A⊆B, and B⊆C then we know that A ⊆ C i.e. A ≤ B and B ≤ C gives us 

A ≤ C so relation is transitive also.  

Hence ⊆ is a partial order relation and (P(T), ⊆) is partially ordered set. 

 

Example: On the set N of natural numbers. Relation aRb iff a ≤ b is a partially 

ordered relation 

Proof: (1) since a ≤ a for all a ∈ N i.e. relation is reflexive. 

(2) Since a ≤ b and b ≤ a ⇒ a = b i.e. relation is antisymmetric. 

(3) If a ≤ b and b ≤ c ⇒ a ≤ c i.e. relation is transitive. Hence less then is a 

partially ordered relation and (N,  ≤ ) is a partial order set. 
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5.2.2 Definition- If R= {(a, b)  | a R b a, b∈A} then inverse relation on A is            

R-1 = {(b,a)  |  (a, b)∈ R} 

 

Example:  Prove that if R is p.o.r (partially ordered relation on X) then so is 

R-1 i.e.R-1 is also a p.o.r. 

 (1) R-1 is reflexive since (a, a) ∈ R ⇒ (a, a) ∈ R-1 for all a ∈ A 

(2) For a R-1 b and   b R-1 a we will show that a=b . As a R-1 b ⇒ b R a.  Also 

b R-1 a ⇒ a R b. Now combining a R b and b R a we get a=b i.e. R-1 is 

antisymmetric. 

(3) Now a R-1 b and  b R-1 c we will prove that a R-1 c . As a R-1 b ⇒ b R a. 

Also b R-1 c ⇒ c R b. Now combining c R b and b R a we get c R a. but then a 

R-1 c i.e. R-1 is transitive.  

Hence R-1 is a partially ordered relation and (X, R-1 ) is a partially ordered set. 

 

5.2.3 Definition: - Let ≤ be a partial order on A then a, b ∈A are said to be 

comparable if a ≤ b or b ≤ a. If we have a and b are two elements of A such 

that neither a ≤ b nor b ≤ a.  We say that a and b are non comparable. 

 

5.2.4 Definition:  Let (A, ≤) be a partially ordered set and If every a and b 

belonging to A either a ≤ b or b ≤ a.  Then A is called totally ordered set or a 

chain simply we can say that every two elements of A are comparable. 

 

Example: On set N of natural numbers with partial order ≤ is a totally ordered 

as for a,b ∈ N either a ≤ b or b ≤ a. But if we take a ≤ b iff a / b, then it is not 

totally ordered on set of N of natural numbers as 3, 5 ∈ N neither 3/5 nor 5/3 

i.e. neither 3 ≤ 5 nor 5 ≤ 3.  
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5.2.5 Definition: If (A, ≤) is a partially ordered set, then l.u.b {a,b} means smallest 

element c of A such that a ≤ c and b ≤ c  and g.l.b ({a, b}) is greatest element 

g ∈ a such that g ≤ a and g ≤ b. 

 

Example:  Take A=N (set of natural numbers) and a ≤ b iff a is less then  b for  

a, b ∈ N.  Then l.u.b ({a, b})= b or a , accordingly if  a is less then  b,  or b is 

less then  a.  The  g.l.b({a,b})= a or b , accordingly if  a is less then  b,  or b is 

less then  a.   

Example: Take A=N (set of natural numbers) and a ≤ b iff a divides b for  a, b 

∈ N.  Then l.u.b ({a, b})= least common multiple of a and b which is 

generally written as l.c.m (a,b) and  g.l.b({a,b})= greatest common divisor of a 

and b which is generally denoted by g.c.d (a,b) are respectively least upper 

bound and greatest lower bound of a and b. 

 

5.2.6 Dual order:  As we have show that if ≤ is Partial order then so is ≤-1 on a set 

A.   The ordered set (A,R-1 ) is called dual order of (A,R). 

 

5.3 LATTICE 

5.3.1 Lattice: - A lattice is a partially ordered set (A,  ≤ ) in which every subset of 

cardinality two has a least upper bound and a greatest lower bound in A. If 

{a,b} is such a set then l.u.b ({a,b}) denoted by  a V b and is called joint or 

sum of  a and b.  Similarly g.l.b ({a,b}) is denoted by a ∧ b and is called 

meet or product of a and b. 

 Another definition is that 

 A non empty set L together with two binary operations ∧ (meet) and ∨ (join) 

is said to be a lattice if the following conditions are satisfied. 

 (i) Commutative laws holds in L under ∧ and  ∨  i.e. 
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 a∧ b = b∧ a     and a ∨b=b ∨a  for all a, b belonging to L. 

(ii) Associative properties holds in L under ∧ and  ∨  i.e. 

 a∧(b  ∧ c)= (a  ∧b)  ∧ c  and  a∨ (b  ∨ c) = (a ∨ b) ∨c   for all a, b and c 

belonging to L. 

(iii) Absorption laws holds in L under ∧ and  ∨  i.e. 

     a ∧(a  ∨b)=a  and  a  ∨  (a∧b)=a. 

 

Example: - If we take N set of natural number, then relation R between two 

elements that aRb iff a ≤ b is a partially order on N.  Here N is a lattice also as 

if we take l.u.b { }( )b,a  = l.c.m (a,b) and g.l.b { }( )b,a  = g.c.d (a,b). 

 

Example: - If we take (P (A), ≤ ) partial ordered set such that P(A) is power 

set of A and  A1≤ A2 iff A1⊆A2 , A1 and A2 are subsets of A. Then it is a lattice 

such that  

l.u.b { }( )21 A,A  =Union of A1 and A2 sets and g.l.b { }( )21 A,A  = intersection of 

A1 and A2 . 

 

5.3.2 Theorem: - If  (A1, ≤ 1) and (A2, ≤ 2) are two partial order set, then so is 

(A1 ,2A× ≤  ) under the  relation (a1,a2) ≤ (b1,b2) iff a1 ≤1 b1 and a2 ≤ 2 b2 for a1,b1 

belonging to A1 and a2 , b2 belonging to A2 . 

Proof:-(1) since a1 ≤ 1 a1 and a2 ≤ 2 a2 1a∀ ∈A1 and  a2∈A2 therefore (a1,a2) ≤ 

(a1,a2) i.e. ≤ is reflexive. 

(2) (a1, a2) ≤   (b1,b2) gives us that a1 ≤ 1 b1 and a2 ≤ 2 b2-----------(1) 

And (b1,b2) ≤  (a1,a2) gives us that b1 ≤ 1 a1 and b2 ≤ 2 a2----------(2) 

From (1) and (2) we get that 

a1= b1 and a2=b2 
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Therefore (a1, a2) = (b1 ,b2). 

Hence r is antisymmetric 

(iii) Since (a1,a2) ≤  (b1,b2) ⇒ a1 ≤ 1 b1 and a2 ≤ 2 b2-----------(3) 

 and (b1,b2) ≤  (c1,c2)   ⇒  b1 ≤ 1 c1 and b2 ≤ 2 c2-----------(4) 

from (3) and (4) we get a1 ≤ 1 c1 and a2 ≤ 2 c2 . [ Q ≤ 1 and ≤ 2 are transitive] 

Hence (a1,a2) ≤  (c1,c2) which proves the result. 

On same line we can prove that cartesion product of two lattices (A1, ≤ 1) and 

(A2, ≤ 2) is a lattice (see problem 1). 

 

5.3.3 Theorem: - Let L be a lattice, then for every a and b in L. 

(1) a∨ b = b iff a ≤ b 

(2) a ∧ b= a iff a ≤ b 

(3) a ∧ b = a iff a∨b=b 

Proof:-(1) Let us given that a∨b = b--------------- (1) 

We know that a ≤ a∨b [by definition of l.u.b of a and b] 

Now using (i) we get a ≤ b--------------- (2) 

Then b ≤a∨b [by definition of l.u.b] 

But b is upper bound of a and b (by (2)) 

Hence b≤a∨b≤b ⇒ b=a∨b 

(2) See problem (2) 

(3) By (2) we get a∧b=a ⇔ a ≤b, Now using (1) we get that  a ≤ b ⇔ a∨b=b 

            ∴ a ∧b= a ⇔ a∨b=b. 

 

5.4 HASSE DIAGRAM 

5.4.1 Definition: - Hasse diagram is pictorial representation of a finite partial order 

on a set.  In this diagram the elements are shown by vertices (or dots).  The 
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two related vertices in Hasse diagram of a partial order are connected by a 

line. 

 

Example.  Let A={1,3,5,6,9,18} and partial order relation that aRb iff a/b.  Its 

Hasse diagram is as 

 

Hasse diagram of (P (A), ≤) where A={a, b} and A1 ≤ A2 iff A1⊆A2, P (A) is 

power set of A then its Hasse diagram is 

 

     φ                              φ 

 

Example: -Let L1{1,2} and L2{1,3} be the chains of divisors of 2 and 3 with 

partial order of divisibility.  Then Hasse diagram of chain L1 is  
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And that of chain L2 is  

 

Then Hasse diagram of L1× L2= {(1,1), (1,3), (2,1), (2,3)} i.e. lattice L1× L2 is  

 

5.5 BOOLEAN ALGEBRA AND PROPOSITIONS 

5.5.1    Definition  A non empty set B with ∨ and ∧ as to binary operation, as unary 

operation and two elements 0 and 1 is called a Boolean Algebra if following 

axioms holds for a,b and c ∈B 

(1) Both binary operations are commutative on B i.e. a∨b=b∨a ∀ a,b∈B 

(2) Distributive laws holds in B 

i.e. a∧(b∨c)=a∧b∨a∧c and a∨ (b∧c)=a∨b∧a∨c ∀ a, b,c ∈ B 

(3) Identity element exist under both binary operations.  i.e. 

 a∨0=a and a∧1=a ∀ a∈B 
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(4) Complement laws a∨a '  =1 and a∧ a ' =0 where 0 is called zero element, 1 

is called unit element and a '  the complement of a. 

 

We will denote Boolean algebra by (B,∨, ∧, ‘, 0,1) 

 

Example:-If we take P (A), power set of a non empty set A.  Then for two 

binary operation ∪ (set union), ∩ (set intersection), and unary operation 

complement of set, (P (A),∪, ∩, -,φ,A) acts as Boolean Algebra. 

Solution: - We will show that all the axioms of Boolean algebra holds 

(1) ∪, ∩ are commutative since B∪C=C∪B and B∩C=C∩B for all B, C∈ P 

(A) 

(2) We also know that in sets B, C, D 

B∪(C∩D)=(B∪C) ∩ (B∪C) and 

B ∩(C∪D)=(B∩C) ∪ (B∩D) there for both distributive laws holds. 

(3) Now B∪φ=B (and B∩A=B ∀ B∈P(A) 

I.e. identity laws holds since φ and A acts as identity element under ∪ and ∩ 

respectively 

(4) BB ∪ =A and =∩ BB φ is complement of B. which proves the result. 

  

5.5.2 Proposition Definition: -Proposition is a declarative sentence that is either 

true or false but not both. 

 

Example: - (1) Sun rises in the west. 

It is proposition since this sentence is declaration but not true  

(ii) 2+2=4 is again a proposition 

(ii) x .y > 0, x ,y∈I is not a proposition as x.y may be greater than zero.  

For x=2,y=1 it is greater than zero, but for x=-2 and y=1 x .y < 0 
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Note: - (i) We generally denote propositions by lower letters p,q,r,s 

(ii) A proposition is also called a statement. 

 

5.5.3 Definition: - If more than one propositions are connected then proposition is 

called compounded. A proposition, which is not compound, is called 

primitive. 

For Example: -Peacock is national bird of India and cow is national animal 

India  

This is a compounded statement which is connected by and. 

We have two primitive statements 

(1) Peacock is national bird of India.  

(2) Cow is national animal of India. 

 

5.6       LOGICS WITH THEIR TRUTH TABLES  

There are three basic logical operations 

(1) Negation 

(2) Conjunction 

(3) Disjunction 

Which correspond to not, and, or respectively. 

 

5.6.1 Negation of a statement p is which contradicts the statement p.  It is denoted 

by ~p.  The relation between truth values of ~p and p has truth table given 

below 

p -p 

T F 

F T 
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i.e. when p is true ~p is false and when p is false it negation is true. 

 

Example: - If p is “there exist a and b for which ab≠ba”, then ~p is “For all a 

and b, ab=ba.” 

 

5.6.2 Conjunction: -The conjunction of two-statement p and q is generally denoted 

by p∧q. 

The true table for conjunction of two statements is given below 

   

P q  p∧q 

T T T 

T F F 

F T F 

F F F 

 

i.e. conjunction is true only when both p and q are true otherwise it is false. 

 

5.6.3 Disjunction: - Disjunction of two statements is denoted by p∨q its truth table 

is given below. 

P q  p∨q 

T F T 

T T T 

F T T 

F F F 

 

We define some other truth tables as for p→q 
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P q  p→q 

T T T 

T F F 

F T T 

F F T 

 

Truth table for p↔q i.e. it is conjunction of p→q and q→p 

Its truth table is as 

 

p q p→q q→ p  p→q ∧ q→p 

T T T T T 

T F F T F 

F T T F F 

F F T T T 

 

  Therefore reduced form of true table is  

 

P q  p→q ∧ q→p 

T T T 

T F F 

F T F 

F F T 

 

Example Find the truth table for p∧(q∨r) and for p∧q∨p∧r and hence show 

that both are equivalent. 

Truth table for p∧(a∨r) 
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P q r q∨r p∧(q∨r) p∧q p∧r p∧q 

∨ p∧r 

T T T T T T T T 

T T F T T F F T 

T F T T T T T T 

T F F F F F F F 

F T T T F F F F 

F F T T F F F F 

F T F T F F F F 

F F F F F F F F 

 

This table shows that p∧(q∨r) ≅ (p∧q) ∨( p∧r) 

 

Another example of Boolean algebra 

 

+ 1 0 

1 1 1 

0 1 0 

 

. 1 0 

1 1 0 

0 0 0 

 

And 1'=0 and 0'=1 then B is a Boolean Algebra infect if we take 1=T and 0= F 

then sum is equivalent to truth table for p∨q and is truth table for p∧q. 
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5.7  KEY WORDS AND SUMMERY 

 In this chapter we have studied partial order relation Boolean algebra, lattices 

and logic gates with their truth tables.por, lattice, Hasse diagram, Boolean 

algebra, logics are key words. 

 

5.8 SELF ASSESSMENT QUESTIONS 

 

Q (1) Prove that cartesion product of two lattices (A1, ≤ 1) and (A2, ≤ 2) is a 

lattice  

 

Q (2) Let L be a lattice, then for every a and b in L, a ∧ b= a iff a ≤ b. 

 

Q (3) Let A={1,3,5,6,9,18} and partial order relation that aRb iff a ≤ b. Draw 

Its Hasse diagram. 

 

Q (4) Prove that every chain is a distributive lattice. 

 

5.9 SUGGESTED READINGS 

(3) Seymour Lepschutz, Finite mathematics (International edition 1983), 
McGraw-Hill Book Company , New York. 

(4)  N.Deo, Graph Theory with application and computer science , Pentile 
Hall of India. 
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STRUCTURE 
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6.1 INTRODUCTION 

6.2 SOME MORE RESULTS OF BOOLEAN ALGEBRA  

6.3 BOOLEAN FUNCTION 

6.4 APPLICATION OF BOOLEAN ALGEBRA IN SWITCHING 

CIRCUITS 

6.5 LOGIC GATE 

6.6 KEY WORDS AND SUMMERY  

6.7 SELF ASSESSMENT QUESTION  

6.8 SUGGESTED READINGS 

 

6.0 OBJECTIVE : Objective of this chapter is to gain more knowledge about 

Boolean algebra and their application in electric circuits. 

 

6.1 INTRODUCTION: In this chapter we study some more results about 

Boolean algebra, Boolean functions, switching circuits, logics gates e.t.c. 

 

6.2 SOME MORE RESULTS OF BOOLEAN ALGEBRA 

6.2.1 Theorem: - ∀ a ∈B, a+a=a and a. a=a (idem potent laws in Boolean Algebra) 

Proof: -(i)We know by Boolean Algebra Axiom a.1=a 

∴ (a+a) = (a+a).1 

 = (a+a). (a+a')    [Q(a+a')=1] 
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 = a+ a. a'    [using distributive law] 

 =a 

(ii) a=a.1=a. (a+a')=a.a+a.a'=a.a+0=a.a 

 

6.2.3 Bounded ness law:-  If (B,+, . ,' ,) is a Boolean Algebra, then  

(i) (a+1)=1 and a.0=0∀ a∈B 

Proof: -(i) Since  

 (a+1) = (a+1).1 

 = (a+1). (a+a')   [Q(a+a')=1] 

 =a+(1.a' )                    [using distributive law] 

 =a+(a'.1)=a+a'=1 

(ii) a.0=(a.0)+0        [Q0=a.a'] 

=a.0+a.a'=a.(0+a')     [using distributive law] 

= a.(a'+0)=a.a'=0 

 

6.2.4 Theorem:-Absorption law:- a+(a.b)=a and  a. (a+b)=a ∀ a,b ∈B, B is Boolean 

Algebra      

Proof: -(i) a+a.b 

=a.1+a.b= a.(1+b)   [using distributive law] 

=a.1    [Q1+b=1 ∀ b∈ B] 

(i)  (a+b) 

=(a+0).(a+b)     [Q a+0=a' ∀ a∈ B] 

 =a+0.b    

 =a    

 

6.2.5 Theorem:- If (B,+,.,') is a Boolean algebra, then 

(i)  (a+b)'=a'.b' ∀a, b ∈B 
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(ii) (a.b)'= a'+b' ∀a, b ∈B 

Proof: - (i) (a+b)+a1 .b1  

=(a+b+a'). (a+b+b')   [using distributive law] 

 =(a+b+a'). (a+1)     [Qb+a'=a'+b, b+b'=1] 

 =(1+b). (a+1)    [a+a'=1] 

 =1.1 

 =1    

also  (a+b).a'.b' 

=(a'.b').(a+b)   [by commutative law] 

  =a'.b'.a+a'.b'.b            [by distributive law] 

 =a'.a.b'=a'.0     [Q b'.b=0 and a.a'=0] 

 =0.b'+a'. 0=0+0=0              [by Bounded ness law] 

∴ We get that a'.b'=(a+b)' 

(ii) See problem (1) 

6.2.6 Theorem:- cancellation law in a Boolean Algebra  

(i) If a+b=a+c and a'+b=a'+c, then b=c 

(ii) If a.b=a.c and a'.b=a'.c, then b=c 

 Proof:- (i) b=b+0 

 =b+a.a'  [Q a.a'=0∀ a∈B] 

 =(b+a).(b+a') [by distributive law] 

 =(a+b).(a'+b) [by commutative law] 

 =(a+c).(a'+c)  [by given condition] 

 =(c+a).(c+a')  [by commutative law] 

 =c+a.a'=c+0=c 

 (ii)b=b.1 

 =b.(a+a')  [Q a.a'=0∀ a∈B] 

 =b.a+b.a' [by distributive law] 
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 =a.b+a'.b  [by commutative law] 

 =a.c+a'.c  [by given condition] 

 =c.a+c.a'  [by commutative law] 

 =c+(a+a')=c.1=c 

  

 Example: - In a Boolean Algebra show that a.b+a.b'+a'.b+a'.b'=1 

 Solution: - L.H.S:- a.b+a.b'+a'.b+a'.b' 

  = a.(b+b')+a'.(b+b') [by distributive law] 

  =a1+a'.1 [Qb+b'=1] 

  =a+a'=1 

  

 Example:- Prove that Boolean Algebra cannot have three elements 

Solution:- If possible, let Boolean Algebra have exactly three elements.  Let a 

be third element of B other then 1 and 0 since 0'=1, 1'=0, we must have a'=a 

(Q if a'=0 ⇒ a''=0'=1 ⇒ a=1 a contradiction similar a'≠1) 

 We have a.a'=0 

 Q a.a=0    

 a=0  this is not possible because a ≠0, our assumption is wrong.  

  Hence prove the result. 

 

6.3 BOOLEAN FUNCTION 

6.3.1     Definition :- Let  (B,+, . ,' ) be a Boolean Algebra .  The element of B is 

called constants in B.  A symbol representing an arbitrary element of B is 

called a variable in B.  A variable in B is denoted by letters a,b,c,--- ------------

,p,q,r, ------------x,y,z etc. 
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6.3.2 Definition :- In (B,+, . ,' ,0,1), a variable or a well formed expressions 

involving Boolen operation ‘+’,’.’,' and a finite number of variable is called 

Boolen function. 

  

 For Example  x+y+z, x.y+z'. etc 

 

Note: - In a B having n variable a product of the form y1.y2------------yn wher 

yi=xi  or xi' for I=1,2,______,n is called a minterm in n varialble.  Simple 

calculatioln shows that we have 2n minterm in B having n variable. 

 Bool’s expansion theorem:- Statement of  (B,+, . ,' ,0,1) be a Boolean 

Algebra and f(x1,x2------------xn) be a Boolean function in n variable x1.x2-------

-----xn, then 

f(x1,x2------------xn)= f(1,1,1,-- ------,1) x1.x2------------xn +f(0,1,-- ------,1) 

x1,x2'------------xn +f(1,0,1,-- ------,1) x1.x2'.x3------------xn +----+f(0,0,-- ------

,0) x1',x2'------------xn' 

 

Example:- Let (B,+, . ,' ,0,1) be a Boolean Algebra and let f(x,y ) be  Boolean 

function of the variable x and y.  By using the following table find the 

expression for f(x,y) 

 

x y f(x,y) 

1 1 0 

1 0 1 

0 1 0 

0 0 1 
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 Solution:- From given table 

 f(1,1)=0, f(1,0)=1, f(0,1)=0, f(0,0)=1 

 Now Boole’s expansion theorem, we have 

 f(x,y)= f(1,1).x.y + f(1,0)x.y' + f(0,1).x'.y+ f(0,0).x'.y' 

  =0.x.y+1.x.y' +0.x'.y +1.x'.y' 

  =0+x.y' +0 +x'.y'     [Q 0.a=0 ∀ a∈B] 

  =x.y' +x'.y'    

          =(x+x').y'      [by distributive law] 

  =1.y'      [Qx+x'=1] 

  =y'    

 

6.4 APPLICATION OF BOOLEAN ALGEBRA IN SWITCHING CIRCUITS. 

 

6.4.1 Definition: - Switching circuit is a arrangement of wires and switches 

connected together to the terminal of a battery.  A switch is a two state device 

used for allowing current to pass through it or not to pass through it. 

A switch in a circuit are denoted by letter 

a,b,c………………p,q,r,…………………,x,y,z etc. 

  There are two methods of connecting two switches  

  (1) Connecting switches in parallel is as 

  The lamp is on if at least one switch is on. 

  (2) Connecting switches in series 

  The lamps is on iff x and y are both are on. 

 

Note: If we denote 0, when switch is off and 1 stands when switch is on.  Then 

we observe following Table when switches are parallel i.e.   is 
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x y x+y y+x 

0 0 0 

1 0 1 1 

0 1 1 1 

1 1 1 1 

 

 And when switched are in series, following table show their output 

 

x y x-y y.x 

0 0 0 0 

1 0 0 0 

0 1 0 0 

1 1 1 1 

  

   If we take switch is off when switch x is on and is on when switch x is off.  Its  

  Table is as 

 

x x' x+x'  x.x' 

1 0 1 0 

0 1 1 0 

 

6.4.2  Theorem:- Prove that if we denote x+y when switches are parallel and x.y 

when switches are in series and x' denoting switch is off when x is off.  Then 

this switching circuit is a Boolean algebra  

  Proof: - (1) By table (1) and (2) we get that both operations are commutative 

   

1 

2 

3 
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  (2) For all x,y,z belonging to B 

 

x y z y.z x+y.z x+y x+z (x+y).(x+z) 

0 0 0 0 0 0 0 0 

1 0 0 0 1 1 1 1 

0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 

1 1 0 0 1 1 1 1 

1 0 1 0 1 1 1 1 

0 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

 

This table show that distributive law x+y.z=(x+y).(x+z) holds .  Similarly we 

can show that x.(y+z)=x.y+x.z for all x,y,z belonging to B. 

             

 (3) 

x 0 x+0 

0 0 0 

1 0 1 

 

 

x 1 x.1 

0 1 0 

1 1 1 
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i.e. identity laws holds in which 0 and 1 acts as zero element and identity 

element of B. 

 (4) 

x x' x+x' 

0 1 1 

1 0 1 

 

x x' x-x' 

0 1 0 

1 0 0 

   

  i.e. x+x' =1 and x.x'=0 ∀ x∈B.  Showing that complement laws holds. 

 Hence we have proved that it is Boolean algebra. 

  

 Example:- Find Boolean function corresponding Boolean switching circuits 

Solution:- In the circuit y and x' are parallel which is represented by y+x', ∴ 

Boolean function ∀ x.(y+x').z. 

 

 Example:- Simply X'.Y'+X.Y'+X'.Y 

 Solution:- Here Boolean function 

 f(x,y)=X'.Y'+X.Y'+X'.Y 

  = (X'+X).Y'+X'.Y 

  =1.Y'+X'.Y [QX+X'=1] 

          =Y'+X'.Y [Q1.a=a] 

  = (Y'+X').(Y'+Y) 

  =(Y'+X').1 

  = Y'+X'  
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6.5 LOGIC GATE 

Definition: - A logic gate is simply and electronic circuit which operate on 

one or more input signal to produce standard output signals.  There logic gates 

are the building blocks of all the circuits in a computer .  There are three basic 

logic gates called or GATE, AND GATE AND NOT GATE. 

 

Note: We shall use the convention that the lines entering the gate symbol from 

the left are input lines and the single line on the right is the output line. 

 

6.5.1   OR GATE: - It is an electronic circuit that generates the output signal of 1 if 

any one of the input signals is 1.  Two or more switches connected in parallel 

behave  

   

  as an OR GATE 

 

6.5.2  Switches in parallel 

AND GATE:- It is an electronic circuit that generates the output signal 1 only 

if all input signals are 1.  Two or more switches connected in series behave as 

an  
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6.5.3  NOT GATE:- It is an electronic circuit that generates an output signal which 

is reverse of the input signal. 

 

 

Example:- Find the Boolean expression for the output of the given logic 

circuit.  Also draw the truth table for the given logic circuit 

 

 

 

 

 

Solution:- The inputs are x and y.  At point 1 the output of NOT gate is X', at 

point 2, the output of NOT gate is y'.  The input to the OR gate at point 3 are 

X' and Y' whose output is X'+Y'. 

    

 Truth table is 

Inputs Output 

x y x' y' x'+y' 

0 0 1 1 1 

1 0 0 1 1 
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0 1 1 0 1 

1 1 0 0 0 

 

Example: - find the Boolean expression for the output of the given logic 

circuit 

 

 Also draw the truth table for the given logic circuit 

 

Solution:- Given circuit is shown Below 

 

 

 

    At point 1, the output of the OR gate is x+y     

At point 2, the output of the AND gate is x.y     

At point 3, the output of the NOT gate is (x.y)'     

At point 4, the output of the AND gate is (x+y).(x.y)' 
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Its truth table is 

Inputs  Output 

x y x+y x.y (x.y) (x+y).(x.y)' 

 

0 0 0 0 1 0 

1 0 1 0 1 1 

0 1 1 0 1 1 

1 1 1 1 0 0 

 

6.6 KEY WORDS AND SUMMERY  

In this chapter we have studied some more results about Boolean algebra, 

Boolean functions, switching circuits, logics gates e.t.c. Switching circuit, 

gates are key words 

 

6.7 SELF ASSESSMENT QUESTION  

 

 Q (1) If (B,+,.,') is a Boolean algebra, then  (a.b)'= a'+b' ∀a, b ∈B 

 

Q (2) Let B={1,2,3,4,6,12} be the set of positive divissor of 12.  If we define 

+,. And ' by a+b= lcm(a,b), a.b=gcd(a,b) and  a'=12/a respectively ∀ a,b ∈B.  

Then show that (B,+, . ,') is not a Boolean Algebra. 

 

Q (3) B is set positive divisors of 6.  We define the binary and unary operation 

as defined in exercise 2, show that (B,+, . ,') is a Boolean Algebra in this case. 
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Q (4) Simplify the circuits given below 

    

(a) 

 

 

 

 (b) 

 

Q (5) Find out the logic circuit corresponding to the following input tables 

Input Output 

X Y  

0 0 1 

1 0 1 

0 1 0 

1 1 0 

 

6.8 SUGGESTED READINGS 

 (1) Seymour Lepschutz, Finite mathematics (International edition 1983), 

 McGraw-Hill Book Company , New York. 

 (2)  N.Deo, Graph Theory with application and computer science , Pentile Hall 

of  India 
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7.0  OBJECTIVE: Objective of this chapter is to gain some knowledge about 

algebraic structure with two binary operations. 

 

7.1  INTRODUCTION: In chapter first we have studied algebraic structure with 

one binary operation. In this chapter, we will study the algebraic structure with 

two binary operations. We define rings, integral domains, fields and ring of 

polynomials over the field.  We will also know about extension field 

containing all the roots of given polynomial.  
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7.2  SOME DEFINITIONS (STRUCTURE, RING) 

7.2.1  Definition: We define structure is a non empty set with at least n ary  

operation defined on it and under which elements of the set satisfies certain  

axioms.   For example group is an algebraic structure. 

 

7.2.2  Definition: Let R be a non empty set with two operations (+, .) generally 

called addition and multiplication. If elements of R satisfies following axioms 

(1) R is commutative group under addition 

(2) It is closed under multiplication i.e. multiplication is binary operation on R 

(3) Multiplication is associative on R i.e. a.(b.c)=(a.b).c ∀ a, b and c ∈R, 

(4) Distributive laws holds in R i.e. 

   a.(b+c)=a.b+a.c    and    (a+b).c= a.c+b.c 

Then R is called a ring. More over if  

  a.b=b.a   and    a.e=e.a=a ∀ a, b ∈R,  

then R is called commutative ring with unity. 

 

7.3  INTEGRAL DOMAIN 

 

7.3.1  Zero divisor: For two elements a, b belong to a ring R such that a.b=0, neither 

a≠0 nor b≠0, then we call a as zero divisor. 
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Example: The set {0, 1, 2, 3, 4, 5} forms a ring under addition and 

multiplication modulo 6 which can be shown easily. Now  

32 6× =0; neither 2 is  zero nor 3  is equal to  

  

7.3.2  Definition: A commutative ring is an integral domain if it is with out zero 

divisor. 

 

Example: (1) I (+,.) (Set of integers) is an integral domain under ordinary 

addition and multiplication. 

Solution: Since ordinary addition and multiplication of two integers is again 

an integer hence both operations are binary operation.  

 We also know (in chapter I) that under addition the set of integer is a 

commutative group. Hence the first condition holds. 

(2) Since the product of two integers is again an integer, multiplication is 

binary operations on set of integer. 

(3) Since a.(b.c)=(a.b).c ∀ a,b,c∈I ,ordinary multiplication is associative . 

(4) We also know that a.(b+c)=a.b+a.c and (a+b).c=a.c+b.c i.e distributive law 

holds in I. 

(5) a.b=b.a ∀ a,b,∈I ,ordinary multiplication is commutative in I. 

(6) Since a.b=0 ⇒ either a=0 or b=0, therefore I is without zero divisor. 

 We see that set of integers satisfies all the axioms of integral domain 

Hence (I,+,x) is an integral domain.  
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Example: (2) Set D={0,1,2,3,4}+,x (5) i.e. set of integers from 0 to 4 is an 

integral domain under addition and multiplication mod 5. 

Solution: - As by definition of a+5b is least non-negative remainder when the 

sum of a and b is divided by 5, it certainly belongs to D. Similarly a ×5 b 

belongs to D i.e. addition and multiplication mod 5 are binary operations on D. 

Now we will show that D satisfies all the conditions of integral domain. 

(1)  The following Table 1,  shows that D is a commutative group under 

addition mod 5 since by table 1, 0+a=a ∀ a∈I ,0 acts as identity element, 

inverse of 0 is 0,1is 4 and 2 is 3.More over ij th entry of matrix is equal to ji th 

entry of the table i.e. a+5b=b+5a  . 

 

+5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

                                         

       Table 1 

                         

×5 0 1 2 3 4 

0 0 0 0 0 0 
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1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 

 

Table 2 

By Table 2, we see that ij th entry of matrix in table 2 is equal to ji th entry i.e. 

a×5b=b×5a. Hence multiplication mod 5 is commutative on D. Also by the use 

of both tables we get  

 2×5(3+54) 

 =2×52   (By table 1) 

 =4     (By table 2)…(1) 

 (2×53)+5(2×54) 

 =1+53    (By table 2) 

 =4          (By table 1)…(2) 

Since (1)=(2), distributive laws also holds 

Moreover a×5b=0 iff a=0 or b=0 (by table 2) shows that D is without zero 

divisors. Hence D is an integral domain. This is an example of finite integral 

domain. 
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7.3.3  Note: If D is an integral domain with unity such that each of its non zero 

elements has an inverse under multiplication then D is called  field. It is 

generally denoted by F, so set F will be a field under addition and 

multiplication if  

(1) It is abelian group under addition. 

(2) Distributive laws hold in F 

(3) F- {0} is commutative group under multiplication. 

Example: The set of rational numbers is a field under ordinary addition and 

multiplication as binary operations. Another example is the set {0, 1, 2, 3, 4} 

under addition and multiplication mod 5. Generally, the set {0, 1, …, p-1} is 

afiled under under addition asnd multiplication mod p , p is prime number. 

7.4  POLYNOMIALS  

7.4.1  Polynomial: Let F be a field.  A polynomial over F is a polynomial in 

indeterminate x whose coefficients are element of the field F. We write 

f(x)∈F[x]. 

For example x2+1 is a polynomial over Q (field of rational numbers) 

x2+ i , i =√-1  is a polynomial over C (the field of complex numbers) 

x2+√2 ∉Q[x] as coefficient √2∉Q 

7.4.2  Theorem: If F is a field then F [x], the set  of all polynomials over F, forms an 

integral domain. 

Proof: Take f (x)= a0+ a1x1+ a2x2+…+ anxn  and  
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g(x)= b0+ b1x1+ b2x2+…+ bnxn , and define addition of two polynomials as  

f(x)+ g(x) = (a0+ b0 )+(a1+b1)x1+(a2+b2)x2+…+ (an+bn)xn  (i.e. component 

wise addition) and multiplication of two polynomials as  

f(x). g(x)= i
i xd∑  , ∑=

=+ irl
rli bad  where sum runs over all positive integers  l 

and r whose sum is i. 

∴ d0=a0b0  

d1=a0b1+ a1b0. 

d2=a0b2+a1b1+a2b0. and so on. 

Clearly addition and multiplication of two polynomials is again a polynomial 

over F, therefore addition and multiplication are binary operations on F[x].  

Now for f(x), g(x), t(x) in F [x] where t(x) is c0+ c1x1+ c2x2+…+ cnxn , 

(f(x)+ (g(x)+ t(x))= (a0+ a1x1+ a2x2+…+ anxn)+(( b0+ b1x1+ b2x2+…+ bnxn )+ 

(c0+ c1x1+ c2x2+…+ cnxn )) 

=(a0+ a1x1+ a2x2+…+ anxn)+( (b0+ c0 )+ (b1+ c1 )x1+ (b2+ c2 )x2+…+ 

 (bn+ cn )xn ) 

= (a0+(b0+ c0 ))+ (a1+(b1+ c1 ))x1+ (a2+(b2+ c2 ))x2+…+ (an+(bn+ cn ))xn  

= ((a0+b0)+ c0 )+ ((a1+b1)+ c1 )x1+ ((a2+b2)+ c2 )x2+…+ (an+bn)+ cn ))xn  

(Q  ai,bi,ci are elements of F and addition is associative in F) 

=((a0+b0)+ (a1+b1)x1+ (a2+b2)x2+…+  
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(an+bn)xn )+( c0 + c1 x1+ c2 x2+…+ cn xn ) 

= (f(x)+ g(x))+ t(x) i.e. addition is associative. 

Also 0∈F[x] and for f(x)∈F[x] ,- f(x)∈F[x] such that  

f(x)+(- f(x)= (- f(x)+ f(x)=0 implies that identity and inverse of every element 

in F(x) exists .Finally  

f(x)+g(x) = i
i

i
i xbxa ∑+∑ = =∑ + i

ii x)ba( i
ii x)ab(∑ + = 

i
i

i
i xaxb ∑+∑ =g(x)+f(x). 

From above results we get that (F[x],+) is a commutative group. 

(2) f(x).( g(x). t(x))=(f(x).g(x)).t(x)(see problem 1) showing that multiplication 

is associative. 

(3) f(x).( g(x)+ t(x))= f(x).g(x)+f(x).t(x) 

L.H.S.= f(x).( g(x)+ t(x))= )x)cb().(xa( i
ii

i
i ∑ +∑ = )xh( i

i∑ …………(1)                         

where ∑ +=
=+ irl

rrli )cb(ah                                                                                    

and R.H.S.= f(x). g(x)+ f(x).t(x)= )xb).(xa( i
i

i
i ∑∑ + )xc).(xa( i

i
i

i ∑∑  

= )xd( i
i∑ + )xe( i

i∑ = )x)ed(( i
ii∑ +  …(2)  

Where ∑=
=+ irl

rli bad  and ∑=
=+ irl

rli cae . Now =+ ii ed i
irl

rrl h)cb(a =∑ +
=+

, we 

see that L.H.S.=R.H.S. Hence distributive law holds in F[x]. 

(4) Finally we will show that F[x] is without zero divisor  
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f(x). g(x) =0⇒ i
i xd∑ =0 , ∑=

=+ irl
rli bad   

∴ d0=0 ⇒a0b0 =0 ⇒ a0=0 or b0=0 or both are zero 

w.l.o.g. suppose that a0=0 and b0≠ 0 

d1=0   ⇒ a0b1+ a1b0=0 

⇒ a1b0=0 ⇒ a1=0     

d2=0  ⇒ a0b2+a1b1+a2b0= 0 

⇒ a2b0=0 i.e. a2=0.Continuing in this way we get ai=0 ∀ i , hence f(x)=0 

.similarly we can prove that g(x)=0,therefore f(x). g(x) =0⇒ either f(x) =0 or  

g(x) =0, there fore f(x) is without zero divisor which complete the proof that 

F[x] is an integral domain. 

 

7.5 IRREDUCIBLE POLYNOMIALS 

7.5.1   Definition: -A polynomial f(x) over F is called irreducible over F if it can not 

be written as product of two non constant polynomials over F, otherwise it is 

called reducible polynomial. For example x2-3 is a polynomial over field of 

rational. We can write 

 x2-3=(x-√3)(x+√3) but (x-√3) and (x+√3) ∉Q[x] 

Hence x2-3 is irreducible over Q. 

 

7.5.2  Remarks (1) Irreducibly of a polynomial depends on the field. 
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  x2-3 is not irreducible (or reducible over field of real number as (x-√3) and 

(x+√3) ∈R[x] 

(2) A non-constant polynomial is a polynomial of degree at least one. 

(3) A polynomial f(x)= a0+ a1x1+ a2x2+…+ anxn is called primitive polynomial 

if gcd(a0, a1, a2,…., an)=1. Also if f(x) is a primitive polynomial which is 

factored as product of two polynomials having rational coefficient, then it can 

be factored as product of two polynomials having integer coefficients. 

(4) If a polynomial is not primitive, then it can be made primitive polynomial 

 over that field.  

 

7.5.3 Theorem Let f(x)= a0+ a1x1+ a2x2+…+ anxn be a polynomial with integer 

coefficient such that for a prime p,p/a0,……….., p/an-1, 0
2 a/p , na/p  (here 

p/a0 means p divides a0 and 
0

2 a/p  means p does not divides a0 ) then f(x) is 

irreducible over Q. 

Proof: W.l.o.g. we may take f(x) as primitive polynomial. If f(x) factors as 

product of two polynomials with rational coefficient then we can always write 

f(x) as product of two polynomials with integer coefficients                        

(Remark (3), 7.5.2). Let if possible f(x) is not irreducible over F, then it is 

reducible i.e  f(x) =g(x)t(x)    (1) 

 where g(x)= b0+ b1x1+ b2x2+…+ brxr  and t(x) is c0+ c1x1+ c2x2+…+ csxs , g(x) 

and t(x) are non constant polynomials. Now by (1), we get 000 cba = . 
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 Since p/ a0 ⇒ p/ b0c0 ⇒ either p/ b0 or p/ c0 (Q  if p divides b0 and c0 

then p2/ b0c0 i.e. p2/a0 , a contradiction to our assumption), therefore, w.l.o.g. 

we suppose that p/ b0 and 0c/p  

  Let k be the least positive integer so that kb/p    ( because if p divides 

all bk then p/f(x), a contradiction to our assumption that f(x) is primitive 

polynomial). Since 

  ak= b0ck+ b1ck-1+ b2ck-2+… +bkc0  and  p/ak  

 ⇒  p/ b0ck+ b1ck-1+ b2ck-2+… +bkc0  

Further by assumption, p divides  b0 , b1, …,bk , therefore  p/ bkc0 also  

 But p neither divides bk nor divides c0, a contradiction. Hence f(x) can 
not be written as product of two non constant polynomials. Therefore, f(x) is 
irreducible. 

7.5.4  Theorem: Prove that f(x) is irreducible if and only of  f(x+1) is irreducible 

Proof: Let us suppose that f(x) is irreducible and f(x+1) is reducible, then we 

can write f(x+1)= g(x+1)t(x+1).  

 If we put (x+1) = y then we get f(y)= g(y)t(y)⇒  f(x)= g(x)t(x), a 

contradiction to our assumption that f(x) is irreducible. Hence f(x+1) is 

irreducible.  Similarly we can prove converse part of the theorem. 

Example: Show that x4+ x3+ x2+ x+1 is irreducible over Q. 

Solution: Let us take f(x) = x4+x3+x2+x1+1, than 

 f(x+1)=(x+1)4+(x+1)3+ (x+1)2+(x+1)+1 

          =(x4+4x3+6x2+4x+1)+(x3+3x2+3x+1)+(x2+2x+1)+(x+1)+1 
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       = x4+ 5x3+ 10x2+ 10x+5.  

Now we get that 5 is a prime number that divides all the coefficients of 

polynomial f(x+1) and 52 does not divides 5=a0. Hence f(x+1) is irreducible by 

Theorem 7.5.3.  Now using Theorem 7.5.4, we get that f(x) is irreducible. 

Example: Prove that x2 + 2x +2 is irreducible over Q. 

Solution: Since 2 is a prime number that divides every coefficient of the given 

polynomial except the leading coefficient and 22=4 does not divides the 

constant coefficient of the polynomial. Hence by Theorem 7.5.3, the 

polynomial x2 + 2x +2 is irreducible over Q. 

7.6  ROOTS OF A POLYNOMIAL 

7.6.1  Definition: For a polynomial f(x), if f(a)=0,  then a is called root of f(x). More 

over if f(x)=(x-a)mg(x) such that g(a)≠0 then a is called root of f(x) with 

multiplicity m. 

For example if f(x)=(x-3)2(x+2) then 3 is a root with multiplicity 2 and –2 is a 

simple root of f(x). 

7.6.2  Field extension: Let F be a field and K be another field containing F, then K 

is called extension of F and F is called subfield of K. 

For example C the field of complex number is an extension of R, the field of 

real numbers. Here R is a subfield of C. 

7.6.3  Theorem (3) A polynomial of degree n over a field can have at most n roots in 

any extension field.   
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Proof: We will prove the result by induction on the degree of the polynomial 

p(x) . If p(x) is of degree 1, then it must be of the form ax+b where a, b are in 

F and a≠0. If α is a root of p(x) then aα+b=0⇒α=(-b/a)∈F i.e. p(x) has a 

unique root (-b/a).Whence conclusion of theorem certainly hold in this case. 

 Now assume that result to be true in any field for all polynomials of 

degree less then n. Let us suppose that p(x) is of degree n and  K be an 

extension of F . If p(x) has no root in K then certainly our result holds for the 

number of roots in K, namely zero roots is certainly at most n. So suppose that 

p(x) has at least one root a in K and its multiplicity is m say. Since               (x-

a)m /p(x), m≤n follows. We get p(x) = (x-a)mr(x) where r(x) ∈K[x] is of degree 

n-m . Now ( ) )x(p/ax 1m+− ⇒ ( ) )x(r/ax −  i.e. a can not be a root of r(x). 

Also if b is a root of r(x) i.e. r(b) =0, b is also a root of p(x). Since degree of 

r(x) is less then degree of p(x), by induction hypothesis it has at most (n-m) 

roots in any extension. Hence it has at most n-m roots in K. Therefore, it is 

clear that p(x) has at most m + (n-m) = n roots in K.  This completes the 

induction and proves the theorem. 

7.6.4  Note: (1) This theorem holds when p(x) ∈F[x], F is a field. If F is not a field, 

then a polynomial of degree n may have more then n roots in some extension. 

For example x2+1 has three roots over the ring {1,-1, i, -i, j, -j, k, -k}. 

(2) If p(x) is a polynomial of degree n ≥1 over F and  it is irreducible over F, 

then there is an extension E of F such that [E: F]= n[i.e. dimension of E as a 

vector space over F since every extension act as a vector space over its 

subfield.] in which p(x) has a root. 

(3) If E0 is a finite extension of F and E is finite extension E0 then E is finite 

extension of F also. More over [E: F] =  [E: E0] [E0: F]. 
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7.6.5  Theorem: For f(x) ∈F [X], which is a polynomial of degree n ≥1, there exist 

an extension E of F of degree at most n! in which f(x) has n roots. (a root of 

multiplicity m is counted m times). In-fact we can say that there always exits 

an extension E of F which contains a full complements of roots of f(x) ∈F[X]. 

Proof: We know that if f(x)∈F[X] has an irreducible factor say p(x), then 

there exist an extension E0 of F  such that [E0: F]≤ n in which p(x) has a root 

(by 7.6.4(2)). But every root of p(x) is a root of f(x), therefore, E0 is an 

extension of F in which f(x) has a root. Thus in E0 we can write                   

f(x) = (x-α)q(x) where q(x) is of degree n-1. Now repeating the above process 

for q(x) we get an extension of E1 of E0 in which has q(x) has a root and 

[E1:E0]≤n-1. At last we get an extension say E which contains all the roots of 

f(x) and [E:F]= [E:En] [En:En-1]… [E1:E0] [E0: F]≤n(n-1)(n-2)….1=n!.(By  

note 7.6.4,(3)) Hence proof is over.  

7.7  SPLITTING FIELD 

7.7.1  Definition: for f(x) ∈F[X] , a finite extension E of is said to be splitting field 

of f(x) over  F if over E , but not over any proper subfield of E , f(x) can be 

written as a product of linear factors. 

7.7.2  Remark (1): By theorem 7.6.5, we came to know that such an extension 

always exists.  

(2): For any field f, F(a) is called smallest field containing F and a. If a is a 

root of an irreducible polynomial p(x) ,then [F(a):F]= degree of p(x). For 

example x2+1 is an irreducible polynomial over Q. As i is a root of it there 

fore [Q(i):Q]=2. Similarly x2-3 is irreducible over Q as its root √3 does not lies 

in Q. Now [Q (√3): Q]=2. 
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Example: Find out splitting fields of some polynomials given below. 

(1) x4 +1 

(2) x4 +x2 +1 

(3) x3 –2   

Proof:  (1) we can write  

  x4 +1= (x4 +2 x2 +1)- 2x2  

= (x2 +1)2-2x2   = (x2 +1)2-(√2x)2 = 

(x2 +1-√2x) (x2 +1+√2x)   (Q  a2-b2 =(a-b)(a+b)) 

we see that if α is a root  of  (x2 +1-√2x)  then -α  is a root of (x2 +1+√2x).so 

we have to find root of (x2 +1-√2x) .its root α is given as                        

α =
2

422 −±− = 
2

22 −±− =
2

2i2 ±− =
2

)1(2 i±−  . 

  We see that Q(√2, i) is the smallest field containing 
2

)1(2 i±− . 

Hence Q(√2, i) is the required splitting field and  

 [Q(√2,i):Q]= [Q(√2,i):Q(√2)][Q(√2):Q]=2×2=4.( Q  √2 satisfies an 

irreducible polynomial x2-2 over Q hence  [Q(√2):Q]=2 . Similarly i satisfies 

an irreducible polynomial x2+1 over Q, therefore, it satisfies x2+1 over Q(√2) 

also hence [Q(√2,i):Q(√2)]=2.) 

(2) We can write    
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 x4+x2+1  = x4+2x2+1- x2 = (x2+1)2- (x)2 = (x2+x+1 )(x2-x+1). 

We see that if α is a root  of  (x2 +x+1)  then -α  is a root of (x2 –x+1), 

therefore  we have to find root of (x2 +x+1). Its root α is given as    

α=
2

411 −±− =
2

31 −±− =
2

31 i±− = ω (complex cube root of unity). But 

ω satisfies second degree irreducible polynomial over Q. Hence [Q(ω):Q]=2.  

(3) For f(x) =x3-2. Its roots are ,)2( 3
1

ω ,)2( 3
1

ω2 ,)2( 3
1

 where ω is complex cube 

root of unity. Now Q ( ,)2( 3
1

ω) is smallest field containing 3
1

)2(  and ω . 

Now 3
1

)2(  satisfies x3-2, an  irreducible polynomial of  degree three over Q. 

Hence [Q( 3
1

)2( ):Q]=3. Since ω is complex number, it is not contained in 

Q( 3
1

)2( ) which is subset of real numbers. Also ω satisfies an irreducible 

polynomial x2+x+1 over Q, therefore it satisfies x2+x+1 over Q ( 3
1

)2( ) also. 

Hence [Q ( ,)2( 3
1

 ω): Q ( 3
1

)2( )]= 2. Hence 

  [Q ( ,)2( 3
1

ω):Q]= [Q ( ,)2( 3
1

ω):Q ( 3
1

)2( )][Q ( 3
1

)2( ):Q]=2.3=6=3!. 

7.7.3 Remark In first example we see that degree of extension of splitting field is 
equal to degree of polynomial, in second we see that it is equal to degree of 
polynomial and in last example we see that degree of extension of splitting 
field is equal to 3! which is maximum degree extension according to Theorem 
7.6.5. 
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7.8 KEY WORD AND SUMMERY: In this chapter we have defined polynomial 
over field, irreducibility of that polynomial over given field and splitting field 
of polynomial.  

  Polynomials, irreducibility, splitting field are key words 

7.9 SELF ASSESSMENT QUESTIONS  

(1) Prove that over any field F, f(x).( g(x). t(x))=(f(x).g(x)).t(x) where f(x), 
g(x) and t(x) are polynomials over F. 

(2) Prove that (D,+×n) is an integral domain iff n is a prime number(operations 
are addition and multiplication mod n). 

(3) Prove that in integral domain F[x], degree (f(x). g(x)) =degree f(x)+  
degree g(x) but result does not holds over arbitrary ring. 

(4) Find out splitting field of polynomials  x6+x3+1,   x4-1 and x3-3 over Q. 

 (5) Show that xn-p  and x10+ x9+ …+x2+ x1+1 are irreducible over Q 

7.11 SUGGESTED READINGS: 
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